淘客熙熙

主题:【纪念西西河开流四周年-原创】“海之光”一 漫海星斗九天落 -- 水风

共:💬39 🌺134
全看分页树展 · 主题 跟帖
家园 【纪念西西河开流四周年-原创】“海之光”完 摇身换得霓虹裳

严重警告,本文比较枯燥无味,建议大家不要看。看了后悔不要怪我欧。

对于海火这种生物发光现象,科学家们很久之前就已经有了认识。但是,第一个开始认真研究这种发光现象的人,是来自日本的一位科学家,Osamu Shimomura。在1960年Shimomura得到了 Fulbright Travel Grant,从而开始了在普林斯顿做三年的博士后研究。他一开始的时候,并没有意识到自己的发现会最终引发出两大重要的发现。

点看全图

外链图片需谨慎,可能会被源头改

这就是年老的Shimomura教授。

他当年所选取的是这种称做水晶水母的小动物。

点看全图

外链图片需谨慎,可能会被源头改

这种小动物在腕足与盘头交界的地方,存在着能够发光的若干细胞。

点看全图

外链图片需谨慎,可能会被源头改

Shimomura的做法,是把腕足给切掉,然后拿着头部进行挤压,挤出来的汁液会发出淡淡的光。为了取得足够的挤出液,Shimomura自己回忆说, 大概挤了一百万只水母。为了获得足够的样品,他甚至专程跑过整个美国,跑到了西海岸华盛顿大学的星期五港口的海洋生物学实验室住了一个夏天。请注意上图中 他手里拿的那瓶,是从水母中提纯后的发光蛋白,而不是后来用细菌生产的。

Shimomura最终发现,发光的过程可以分为两步,第一步是一个被称做aequorin的蛋白,在遇到钙离子之后,会利用ATP来发出蓝色的光。这一步骤,也是绝大多数的发光生物所采取的步骤。然后,aequorin蛋白所发出的蓝光被绿色荧光蛋白所接受,从而激发出绿色荧光。

点看全图

外链图片需谨慎,可能会被源头改

在1963年,Shimomura将aequorin蛋白可以检测微量钙离子的特性发表在科学杂志上。这一成果直到4年之后才被用来检测肌肉中微量钙含量的改变。但是很快这个发现就被引用到了其他方面,并使得钙离子的研究成为所有离子研究的最透彻的一个。

在此之后的40年中,Shimomura一直在持之不懈的研究aequorin蛋白,并解决了这个蛋白绝大多数的生物学问题。而绿色荧光蛋白则被旁置了好久。

20年之后,Douglas Prasher在1987年开始对于绿色荧光蛋白(GFP)的研究。他是第一个意识到绿色荧光蛋白巨大的潜在生物学作用的人,由于当时的产生蛋白的克隆技术已经基本成熟,生物学中心法则也已经确立多年了。Douglas Prasher突发奇想,可不可以将这段绿色荧光蛋白连接到别的蛋白质后面,这样就可以产生一个融合蛋白

点看全图

外链图片需谨慎,可能会被源头改
点看全图
外链图片需谨慎,可能会被源头改

因为融合蛋白同时具有绿色荧光蛋白的发光特性和原来蛋白的基本生物学活性。所以可以用来研究蛋白质的定位和表达时段等非常重要的功能。

Shimomura在1974年曾经证明了绿色荧光蛋白是个小分子蛋白。所以,这就给这种异想天开的想法增加了不少的可能性。经过几年的努力,Douglas Prasher终于在1992年的基因杂志上发表了绿色荧光蛋白的序列。但是很可惜的是,他得到的基金是3年期的,在他还没有来得及表达这种蛋白的时候,就没钱了。如果我们能够重新回到1990年左右,就会理解当时的工作是多么的艰难。那个时候,绝大多数主流生物学刊物的主要文章,都是测序和重要蛋白的序列发表。一个博士生的4-5年的工作,通常也仅仅是完成了一个手工蛋白质的核苷酸测序任务。

在1988年,当Douglas刚开始克隆绿色荧光蛋白的工作的时候,Marty Chalfie才第一次听说了绿色荧光蛋白这个东西。他从一开始就意识到了这个蛋白的重要性。但是他当时没有任何的工作基础,所以当他听说Douglas在克隆这个基因的时候,便开始表现出来浓厚的合作意向。当Douglas发表了绿色荧光蛋白的序列之后,他把一份克隆的绿色荧光蛋白序列送给了Marty Chalfie。Marty Chalfie李可让手下的一名研究生,Ghia Euschirken,开始将这个绿色蛋白放置到某个基因的特定启动子下面,并进行表达。很快,他们就得到了第一株表达绿色荧光的细菌。

点看全图

外链图片需谨慎,可能会被源头改

从此开始,揭开了持续十年的,在各种不同的模式生物中,利用绿色荧光蛋白来揭示基因的表达调控和蛋白定位的研究工作。其中包括了绿色荧光的小鼠,兔子和斑马鱼。

点看全图

外链图片需谨慎,可能会被源头改

点看全图

外链图片需谨慎,可能会被源头改

点看全图

外链图片需谨慎,可能会被源头改

荧光蛋白的另外一个突破性发现,是Sergey A. Lukyanov作出的。在他之前,没有人对于野生的类似绿色荧光蛋白的基因表示过兴趣。Sergey成功的从珊瑚里面提取到了一种红色的荧光蛋白。这在当时曾让大家大吃一惊,因为从来没有人听说过珊瑚也会发光。

点看全图

外链图片需谨慎,可能会被源头改
点看全图
外链图片需谨慎,可能会被源头改
点看全图
外链图片需谨慎,可能会被源头改

从那之后,很多科学家,尤其是海洋生物学家们,致力于研究各种稀奇古怪的可以发光的海洋生物,希望能够发现一些新的荧光蛋白出来。他们的确也发现了不少,但是所有的这些新发现的荧光蛋白跟原来的绿色荧光蛋白比起来,都有不少的缺陷。比如说,绿色荧光蛋白是个单体就具有活性的小分子量的蛋白,所以可以很容易表达出来,并且很快的折叠成自然状态,产生荧光信号。而Sergey发现的红色荧光蛋白是个四聚体,本身的分子量比绿色荧光蛋白又大得多。所以无论在信号强度,和信号产生的滞后效应上,都远远不及绿色荧光蛋白。

这个时候,加州理工学院的Roger Tsien想出了另外的一个角度来解决这个问题。Roger是学习化学出身的,他就想,如果我们不能够发现别的颜色的荧光蛋白,那么我可不可以通过突变,来使绿色荧光蛋白变成别的颜色的呢?从2001年开始,他的实验室陆续产生了多个不同颜色的突变体,并在2004年的时候最终完成了所有可能的突变体筛选工作。最后的结果是,一个彩虹色的荧光蛋白系列。

点看全图

外链图片需谨慎,可能会被源头改

点看全图

外链图片需谨慎,可能会被源头改
点看全图
外链图片需谨慎,可能会被源头改

他的这系列荧光蛋白,已经开始广泛的被应用到了各个生物学领域里面。

而他的这些突变体,也验证了一开始大家的一个猜想。

点看全图

外链图片需谨慎,可能会被源头改

就是为什么在蓝绿色占主要地位的海洋生物发光中,会出现红色的另类。

这些红色的光线就是由突变的蓝绿色荧光蛋白发出来的,就象我们在Roger实验室里面通过人工突变得到的一样。这也在某种程度上证明了进化理论中,关于突变的预先性和随机性的机制。

全文完,谢谢大家。

关键词(Tags): #生物发光#海火元宝推荐:爱莲,马鹿,
全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河