淘客熙熙

主题:【原创】牛与熊,从科研角度看股市(一)---从一篇小论文谈起 -- 千里烟波

共:💬219 🌺470
全看分页树展 · 主题 跟帖
家园 【原创】牛与熊,从科研角度看股市(五)--模型的预测能力

经济学论文中的模型可以大体分为两类,第一类是真正意义上的经济学模型,有参与者的行为集合,效用函数,外生环境,然后求出假设条件下最优解。特别猛的人就全用数学语言,弄个拓扑空间,搞个随机过程,解出来的也是数学,这样的好处是一般性(general),很多类似的论题可以套用。大部分的人的模型看上去就很具体了,比如说假设某人的效用函数就是X平方,然后再接一系列的具体的方程,这个叫做应用理论(Applied Theory),好处是容易理解,也容易和实践相结合来应用数据。和它最直接相联系的就是校准(calibration),通过具体模型推导出显示数据和假设参数之间的关系,然后倒推出参数应该是什么样的。

例子:根据理论,假设个人的相对风险厌恶参数是A,那么如果给定100元,此人会把100乘以(1-A)元去买彩票。那么通过调查,甲愿意用十块钱去买彩票,那么它的风险厌恶参数就是0.9

以上的模型又被统称为结构模型(Structural Form),就是有经济理论支持的模型。与它对应的就是简化(?)模型(Reduced Form),基本上就是靠数据说话,偏重统计方面

例子:y = b * x + e

用最小二乘法算出x对y的影响(b值),暂不考虑它们的意义。

鉴于经济学不是科学,而是艺术,structural和reduced form两者并不矛盾,而是术业有专攻。Structural模型更多地能够帮助人们透过现象看本质,研究是什么造成了我们所观察到的现象,我们称为“解释”。Reduced模型除此之外还能帮助我们来判断未来究竟会怎样,称为“预测”。二者并非没有交集,只不过现实的研究更倾向于Reduced模型善于预测,而Structural模型作解释更加让人信服。

宏观经济预测在70年代和80年代遇到了很多问题和责难。滞胀+石油危机使得预测失灵。也由此带出来“卢卡斯批评(Lucas Critiques)”,大意应该是模型不是一成不变,随着社会经济发展,各种变量之间的关系在不断改变着,所以使用模型需要考虑参数的不确定性。以前数据估计出来的参数现在未必好用。在时间序列里面称作结构破裂(?)“Structure Break”。大家都知道菲利普斯曲线(失业率和通胀率之间的权衡),但是80年代菲利普斯曲线整体移动了,原来的参数假设就不灵了...

而且这些宏观预测模型大多是非常复杂的结构模型,一个简单的RWI-商业周期模型就需要41个随机方程和86个定义方程,这还叫作中等规模模型!计量经济学里有一个重要的准则就是Parsimony,意思是简化。因为虽然多参数模型可以更好的拟和数据,但是预测能力会大打折扣。而且我们对宏观经济的把握往往是偏颇的,这么多方程如果有一个变量出问题或者有些东西忘掉了,连锁反应会把整个模型毁掉。客观地说,经济管理版里面安德森也好,虎哥也好,子玉也罢,对宏观经济的把握往往来源于模糊的人类逻辑,他们是写不出来整个经济系统方程的。但正是由于有模糊逻辑,所以才会看到大方向上的问题而不拘泥于小数点后几位的数据。

综上,我们说,好的预测模型一要有稳健性,不会因为些微的参数变化而产生蝴蝶效应;二要有学习性,要回通过新数据的加入而能来逐渐修正自己。

稳健性的问题暂时用时间序列来解决,而学习性我们用贝叶斯的方法来实现。

元宝推荐:老马丁,
全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河