淘客熙熙

主题:【原创】园外看花说印刷 -- 河蚌

共:💬114 🌺1097
全看分页树展 · 主题 跟帖
家园 资料,IBM的访谈

张雷:沃森系统的一个关键步骤是评价备选答案的可靠性。这个可靠性是由上百个算法从各种不同的角度评价得出的。例如:关键字匹配程度、时间关系的匹配程度、地理位置匹配的程度、类型匹配程度等等。沃森在每一个角度上都能得到量化的可靠性评价。而且这些评价算法所依赖的知识源也是可追溯的。所以,如果需要,沃森可以为用户提供答案的依据。

在沃森参赛之前,它会从历史数据中进行学习。比如,如果它回答错了一个往期节目上的问题,它会从中学习到一些信息。在参赛之时,它主要依赖以前学习的结果,但也进行一些简单的在线学习。例如,它可以从已经被其它选手回答的同一类型问题中归纳出一些特点,指导其回答这类问题。另外,答错题目也会导致沃森调整其游戏策略。因此可以说,沃森具备了初步的自我学习和完善的能力。

张雷:非结构化知识主要就是以其原始的文本来表示的,而结构化知识则使用了诸如RDF这样的表示和管理方法。知识出现不一致时,沃森通过对大量往期题目的学习来发现哪些是在该游戏中更值得依赖的知识,而哪些在该游戏场景中是不可靠的。

张雷:对于人工智能实践来说,沃森的经验表明依靠单一或少数算法是很难成功的。而依靠大量的各种小算法的集成更容易取得进展。这似乎和生物界的多样性有着相似性。另外,沃森也说明,人工智能技术已经取得了相当大的进展,通过大规模的集成这些技术,很多我们看似很难的问题已经从“不可能解决”变为“可能可以解决”。例如,沃森表明,以前人工智能中的知识获取的瓶颈(knowledge acquisition bottleneck)似乎变成了一个可能可以解决的问题。

对人工智能的担忧在现阶段是没有必要的。我们还没有看到机器具有自我意识。所有的功能都是由人控制和提供的。在现阶段,人工智能技术,包括沃森,是用来帮助人的,而不是取代人的。

张雷:沃森代表的是自然语言处理和人工智能技术的突破,可以应用于很多领域,例如医疗、金融、电信、政府服务等。例如,在医疗领域,医疗记录、文本、杂志和研究资料都以自然语言编写——这是一种传统计算机难以理解的语言。一个可以立即从这些文件中找出准确答案的系统能够给医疗行业带来巨大的改变。IBM最近宣布与Nuance通信公司签署协议,在医疗行业探索、开发沃森计算系统的先进分析能力,并实现其商业化。当然,为了让沃森真正服务于这些领域,可能还需要准备相应的专业知识库等额外的努力。沃森不是万能的,对于具有很大主观性或依赖个人生活经验的问题,沃森现在是不擅长回答的。

张雷:沃森确实是一个庞大的系统。但具体来说,也就是运行在不到100台的IBM Power7服务器上。因此,它也并不是可望而不可及的。很多企业和机构已经拥有远不止100台服务器。当然,要让沃森服务越来越多数量的问答请求,需要的机器数量会上升。因此,我们也不排除通过云服务的方式来提供沃森。

张雷:IBM中国研究院在研发沃森系统的过程中,发挥了重要的作用。我们为沃森系统采集、分析和使用各种结构化的知识,利用结构化和高可靠的知识提供问题解答,排除让系统显得“愚蠢”的答案,以及帮助沃森系统提高其学习能力。来自IBM中国研究院的很多技术成果已经融入在沃森系统中,而有的研究成果则为整个科研团队提供借鉴和参考。

不久前,IBM超级计算机沃森(Watson)在美国电视智力答题节目《危险边缘(Jeopardy!)》中上演了人机大战,并最终击败两位人类冠军,赢得最后的胜利。沃森由IBM全球多个研究院和大学共同研发,历经四年研制而成。IBM中国研究院也参与了该项目的研发。InfoQ中文站有幸采访到来自IBM中国研究院直接参与了沃森项目的张雷博士。张雷博士是IBM中国研究院信息与知识管理部门研究员,在过去的三年中,他和他的研究团队与全球研究团队一起,致力于深度问答项目(DeepQA)的工作,研究并开发了沃森系统。在IBM期间他申请过多项专利并获得过IBM杰出技术成就奖。在学术领域,张雷博士研究兴趣广泛,涉及语义Web、知识表示与推理、信息抽取与检索、问题回答系统以及机器学习等,发表学术论文20余篇。他是WWW、IJCAI、ISWC等重要国际学术会议的程序委员会委员、第九届国际语义网大会(ISWC2010)的本地组织者之一,还是第一届中国语义万维网论坛(CSWS2007)的主要发起人之一。下面有请张博士为我们揭开沃森背后的技术奥秘。

http://www.infoq.com/cn/articles/ibm-watson-ai

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河