主题:几何直观地介绍广义相对论的时空以及大爆炸模型 (0) -- changshou
几何直观地介绍广义相对论中的时空以及大爆炸模型 (11.5)闵可夫斯基时空的物理来源
上文已经解释了闵可夫斯基时空 和狭义相对论的关系。但有的读者对 闵可夫斯基时空的物理来源 仍感到迷惑。因此我写了这一篇。
狭义相对论的一个基本假设是:世界上存在一种观察者, 名叫惯性观察者,他们之间相对匀速直线运动。我们可以这样定义他们:不受外力的物质点(观察者), 就是惯性观察者。有了惯性观察者, 就可以 以他们的世界线为时间轴 建立每个惯性观察者自带的时空坐标系(从而有了时空分解),叫惯性参照系。(当然从实际角度讲,你必须先提供一个物质点不受外力的判据。这不是一个实验观测能解决的问题, 因为此时还没有建立研究运动的任何参照系。 通常能做的是指定一个看上去 受其它物体影响很小的东西 作为近似的不受外力的东西,比如在地球上,就指定地球。)这个假设可以说是先验的。以后我们会看到广义相对论不要这假设。
狭义相对论的又一个基本假设是:光在不同惯性参照系下速度不变。这个假设来源于电磁场的理论。电磁场的麦克斯韦方程说 电磁波(包括可见光)在不同惯性参照系下速度不变。这个假设也受实验支持。 如果我们用勾股定理 在某个惯性参照系里 定义空间距离, 我们就发现 之前我们定义的某点处的光锥 就是经过该点的所有方向的光的世界线的集合。 光在不同惯性参照系下速度不变 意味着 光锥也不变。可是 我们前面讲过光锥可以用 “三正一负”的“勾股定理”定义的闵可夫斯基时空距离 来定义。 而我们又知道 不同整体坐标系下 闵可夫斯基时空距离不变(意味着光锥也不变)。
如果 我们把惯性参照系 作为时空中的 整体坐标系, 然后用这些整体坐标系 和“三正一负”的“勾股定理”来定义距离, 我们就得到闵可夫斯基时空。 反过来, 如果我们假定时空是 闵可夫斯基时空,然后用整体坐标系来定义惯性参照系,我们就既建立了 惯性参照系(而且惯性参照系间相对匀速直线运动), 又实现了光在不同惯性参照系下速度不变。
这就是闵可夫斯基时空的物理来源。
本帖一共被 1 帖 引用 (帖内工具实现)
- 相关回复 上下关系8
🙂不用急,会讲的 changshou 字89 2012-02-14 19:11:16
🙂时空洛仑兹流形是四维的,即是说时空都可能是弯曲的? starwolf 字0 2012-02-14 08:36:41
🙂是的 changshou 字0 2012-02-14 08:37:09
🙂几何直观地介绍广义相对论的时空及大爆炸模型 (11.5)
🙂关于为啥光是时空分隔的理解 starwolf 字196 2012-02-15 10:48:09
🙂光锥分隔亚光速和超光速, 不是分隔时空 changshou 字0 2012-02-15 10:57:19
🙂是啊,光锥分隔亚光速和超光速。 starwolf 字208 2012-02-15 21:34:33
🙂几何直观地介绍广义相对论中的时空以及大爆炸模型 (12) 19 changshou 字3429 2012-02-13 10:13:06