主题:【原创】围绕脑科学而发生的若干玄想 -- 鸿乾
终于可以坐下来写帖子了。
首先感谢各位在过去几周的回复。总之,读了各位的回复,我是感到我很值得了。写的东西不怎么样,但是大家回复都很认真,信息量很大,我受教多多。特别是Fuhrer河友,他推荐的书很有趣。我在旅途中读了一些。感到很受启发。因此也愿意再次推荐给各位。不过也愿意推荐一个对这本书提出相当严苛批评的文章,链接是:http://www.newyorker.com/online/blogs/books/2012/11/ray-kurzweils-dubious-new-theory-of-mind.html
正反两方面的意见都读,比较有意思。其实批评无非是说那个Ray的论调早就不是最新科技,很过时。这个对于我们外行来说,不是问题。
正因为读了这本书,也算是应当几位河友的回复,就先来谈玄想:从信息处理机到学习机,再从学习机到更高深的机器。本来的想法是先谈其他认识论方面的玄想。不过,事情已经发展到了这里,先谈学习机,正对时景。也希望同样可以获得河友们的积极讨论,而有很好的收获。
我个人的意见,我们可以按照这样的层次来划分人脑的活动:1)信息处理活动;2)学习活动;3)其他更深层次的活动。这样的分类,当然非常粗糙,而且显得功利性极强。不过,我就是因为功利而这样分的。权且这样分吧。不过,我还是有些相信,这样的分类事实上反映人脑的活动和功能的某种内在的指标。
那么什么是信息处理活动,什么又是学习活动,什么又是更深层次的活动?
信息处理活动当然范围很广,但是,最典型的信息处理活动,可以用图书馆管理员的活动来标示。分类,整理,简单的算术,登记,等等。很多更深层次的脑力活动,例如,计算初等代数,计算微积分,二值逻辑运算和推理,等等,其实也应该算到信息处理活动里面。我想,这里的深入讨论恐怕需要相当的精力,还是让我们利用论坛的特点,先把下面的话说了,以后再在互动讨论中来细致讨论。总之,信息处理活动,基本上就是现有的计算机可以做的,而且做得很好的那部分。人脑的这部分的能力,其实是相当晚近才发展起来的能力,也就是文明时代才逐渐发展起来的能力。在信息处理方面,机器已经比人做得好得太多,现代计算机已经在这方面全面超越了人脑的能力。
计算机具备处理信息的能力来源于编程。而人具备处理信息的能力来源于学习。因此学习活动是比信息处理活动更高层次的活动。现代技术机仍然具备上不具备学习能力。虽然有了若干成功的学习机器,例如,Siri,Watson等等。这些机器(或者说程序)已经在实际上具备一定的学习能力,也就是说,可以在训练过程中获得一定的处理信息的能力,然后在使用过程中,运用这种能力。但是,如果更深入看,这些机器的基本能力其实还是来源于编程,其学习过程事实上是一种获取外部数据而充实到自己的内部的过程。人脑的那种学习活动,目前还没有机器可以比较完善地实现。人脑的学习活动,我们还不需要走得很深,从婴幼儿的发育说起。我们仅以一个比较简单的例子,小学生学习算术,来说明。老师讲几个原则(其实这几个原则以及远远超过了皮亚诺公理,如果人脑是电脑的话,这几个原则就可以编程人脑的算术能力了),发一些练习,学生做作业,老师批改作业,逐渐地,学生就能够理解原则,可以举一反三,做所有数的算术了。当然这个逐渐是好几年,甚至有些人永远都不能获得这种算术能力。这就是学习,而不是编程。
超过学习活动的人脑活动,我们可以认为是更深层次的,我们目前还不能触及,也没有必要触及。人工智能其实是一个比较不很实际的课题。在目前的情况下,我们没有必要非常深入探究人脑智力的全部,我们完全可以局限在信息处理,和学习这两层上。现代计算机已经可以很好做信息处理,但是还不能做学习。下一步的发展就是要让计算机能够学习,或者说具备类似学习的功能能力。计算机发展了这两层能力,离开真正的智能,其实还差很远。提出人工智能其实不过是计算机发展初期人类的一种意识混淆,一种人为恐惧而已。机器发展离开人工智能还非常远。我们用不着操这个心,也操不了这个心,操心了不能产生什么成果,围绕这个话题的大量的工作其实并不很有效,很有生产力。
但是,让计算机器具备学习能力,是已经推上日程的重大课题。这是几个方面共同促成的。一方面,很多信息处理任务已经很难为有效的编程来达成。玩Jeopardy的那个Watson就是很好的例子。自动驾驶也是这样的例子。另一方面,最近若干年,计算机的机器学习技术也有了很大的提高。虽然我认为,大的理论的突破还是没有的,但是很多方面的确有很好的进展。这里给一个链接,是斯坦福的公开课程,还是很有意思的。https://www.coursera.org/course/ml 看视频学新技术,不费力,还好玩,我是下载后,在旅途中等等时间片段,看看这些视频,感到很好。还有就是市场需求也正在积累,对具备学习功能的机器和程序的要求也越来越大。因此,我深感下一步的重大发展就是让计算机器具备学习能力。
其实即使是计算机器具备了学习能力,例如理想地讲,可以从空白开始学习算术,这种计算机器也并不能和人的智能匹配。人的智能远比这种学习能力要深。我们没有必要现在就陷入这个题目。等到几十年后,学习机已经很发展了,那时再来谈机器智能也不迟。
那么如何实现这种具备学习能力的机器?还是必须要从两个方面进行。一个方面是理论的,学习的理论,一个是实际的,就是建造一些的确具备某种学习能力的机器,哪怕是很粗陋的机器很低级的学习能力。另外,我认为,重要的是建立通用的学习机。目前的那些学习机,例如Siri,Watson等,都是非常专用的,是采用了特殊数学模型的,采用了特殊编程的机器。这样的机器,和通用的学习机将很不相同。通用的学习机和现有的那些专用学习机比较,恐怕就像通用计算机和历史上的那些专用计算机(例如计算弹道的模拟计算机等)比一样。
究竟怎么入手考虑通用的学习机?下个帖子再继续了。非常欢迎各种设想和意见,反正我们是玄想,什么想法都是好的。
- 相关回复 上下关系8
🙂DARPA的数量众多成果 川普 字58 2013-01-25 05:13:00
🙂我相信中国军方也有类似机构 3 本嘉明 字351 2013-01-24 22:46:14
🙂谢谢。我正在想写一个帖子,谈中国版的先进科技局 3 鸿乾 字321 2013-01-25 11:20:23
🙂玄想2:从信息处理机到学习机,从学习机到。。。
🙂有关Kurzweil新书的那个评论当时也读过 4 川普 字2669 2013-01-13 01:30:09
🙂我的理解是这样的:他的最核心的思想 2 鸿乾 字1216 2013-01-14 05:03:18
🙂喜欢pattern recognizer,但不喜欢 1 墨虎 字370 2013-04-24 17:43:43
🙂谢谢回复这个老帖子。不过,层级是不可避免的 1 鸿乾 字413 2013-04-24 18:25:54