淘客熙熙

主题:【原创】《量子》----第十章·哥本哈根的不确定性(1) -- 奔波儿

共:💬24 🌺205
全看分页树展 · 主题 跟帖
家园 【原创】《量子》----第十章·哥本哈根的不确定性(4)

要想“看到”电子,需要一种特殊的显微镜。普通的显微镜,是将可见光投射到物体上面,然后光线反射回来形成图像。然而,可见光的波长远远超过电子的尺寸,因此无法被用于确定电子的准确位置,它们会像水波盖过一块鹅卵石那样,完全掩住电子的。人们需要那种使用γ射线的显微镜,这种“光线”具有极短的波长和极高的频率,可以用来确定电子的位置。1923年,阿瑟·康普顿对X射线撞击电子进行了研究,从而发现了爱因斯坦所预言的“光量子”存在的确切证据。海森堡设想,就像两个桌球撞在一起,当γ射线的光子击中电子时,会发生散射,从而能够在显微镜将其观测出来,而同时,电子也会被反弹回去。

但是,由于γ射线的光子的影响,电子的动量是非连续性的,且瞬间形成的,而并非那种连续性的且逐渐形成的。一个物体的动量等于其质量乘上其速度,其速度的任何变化都会相应引起其动量的变化。当光子击中电子时,光子的速度会发生改变。而要想尽可能减少光子动量的这种非连续性变化,唯一能做到的就是减小光子的能量,从而降低碰撞所带来的影响。要想实现这个目的,可以用波长更长、频率更小的光,但是如果换用了这种光,就意味着无法准确标定电子的位置。对电子位置的测量越精确,则对其动量的测量就越不确定或越不精确,反之亦然。

海森堡指出,如果用Δp和Δq(Δ是希腊字母德尔塔(delta))分别代表对动量和位置进行测定的“非精确度”或“非确定性”,那么,Δp乘以Δq应该总是大于或者等于h/2π,即ΔpΔq≥h/2π,其中,h为普朗克常数。该公式就是测不准原理,即对位置和动量的“同时测量结果的非精确性”的数学表达形式。海森堡还发现,在另一对所谓的共轭变量,即能量和时间之间,也存在另一个“不确定性关系”。如果用ΔE和Δt分别代表某一系统的能量E,以及E被观测的时间点t这两个变量的测量不确定性,则有ΔEΔt≥h/2π。

起初,一些人认为测不准原理之所以存在,是由于实验仪器本身存在的缺陷所引起的。他们坚信,如果改良了设备,那么不确定性就会消失。毕竟,海森堡是用想象中的实验来勾画出测不准原理的意义的,因此不可避免会带来一些误解。然而,这些想象中的实验虽然是假想出来的,但都是在理想状态下运用最棒的设备才能完成的。海森堡所揭示的测不准原理反映出现实的固有特征。海森堡认为,原子世界的观测精度间所具有的不确定性关系,以及普朗克常数的大小都决定了,这些限制是无法逾越的。相对而言,“不可知的(unknowable)”比什么“不确定的(uncertainty)”或者“非确定性的(indeterminate)”更能刻画出他这一伟大的发现。

海森堡认为,正是精确测量电子位置这一行动本身,阻止了人们在同一时刻精确观测其动量。而原因,正如他所指出的那样,简单明了。为了确定电子的位置,人们需要用光子去撞击电子从而“看见”电子,但电子因此所产生的扰动却是无法预测的。海森堡认为,在测量过程中,这种无法避免的扰动就是不确定性的根源所在。

他提出,这一解释是基于量子力学的一个基本方程:pq-qp = -ih/2π,其中,p和q分别代表粒子的动量和位置。而藏在这种不可交换性(即p×q不等于q×p)背后的,就是这一内在的不确定性。如果在实验中,先测定一个电子的位置,然后再测定其速度,那么就能得到两个精确数值,把这两个值相乘,可以得到一个答案A。然而,如果把测量顺序颠倒一下,即先测量速度,然后再测量位置,则相乘后会得到完全不同的一个结果B。每种情况下,第一个先测量的量都会引起第二个测量结果的扰动,且这两次扰动是不同的。如果不存在任何这种扰动,那么p×q将会与q×p完全相同。也就是说,pq-qp将等于零,那么也就不存在不确定性,而量子世界也将随之消失。

海森堡振奋异常,因为他终于把自己零散的思绪几乎完整地拼接在一起了。海森堡所提出的量子力学是建立在矩阵基础上的,对于该矩阵所包含的变量,诸如位置和动量,人们不能同时对其进行观测。在他所提出的矩阵力学中,如果两列数相乘的顺序相反,就会出现不同的结果,这一奇怪的定理长久以来一直困扰着人们,这一谜团背后到底掩盖着什么样的物理涵义。现而今,他终于揭开了面纱。根据海森堡的理论,谜底就是“ΔpΔq≥h/2π所描述的不确定性”,该公式为pq-qp = -ih/2π“的成立提供了依据”。他认为,正是不确定性“确立了这一公式,而同时我们没有必要知道p和q的变化量的物理意义”。

测不准原理反映出量子力学和经典力学的理论基础差别非常之大。在经典力学中,我们可以在任意时候,精确地对物体的位置与动量进行同时测量。如果一个物体在任意时刻的位置和速度都是已知的,那么该物体在过去、现在和未来的运动轨迹都是可以精确计算出来的。海森堡说在今日的物理学领域,这些根深蒂固的概念“也可能被原封不动地照搬到原子运动过程中”。然而,当我们试图对一对共轭的变量,例如位置和动量,或者能量和时间,进行同时观测时,这些概念的缺点就暴露无遗。

在海森堡看来,在云室所观测到的所谓电子轨迹,以及量子力学之间,测不准原理就是那座沟通彼此的桥梁。当他搭建这座介于理论与实验之间的桥梁之时,他提出量子力学“所包含的数学公式正是用来解释这种实验状态的”。他确信,如果量子力学说什么事情不可能发生,那么这件事情就不可能出现。“量子力学的物理解释依然存在许多不足之处,”海森堡在撰写关于测不准原理的论文时写道,“那些关于连续性与不连续性,以及粒子与波的争论正反映了这一点”。

第十章·哥本哈根的不确定性(5)


本帖一共被 2 帖 引用 (帖内工具实现)
全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河