- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:【文摘】相对论通俗演义 -- 不爱吱声
第九章 黎曼曲率杂谈
(1)
爱因斯坦方程横空出世了,求解这个方程变的很重要。爱因斯坦的方程是偏微分方程,它是几何和分析之间的桥梁,这个方程里面,最实质的内容就是黎曼曲率。需要求解的是度量函数,但求解一般不是轻易的事情。爱因斯坦曾经在一次纪念Maxwell的演讲时说:“偏微分方程进入理论物理的时候只是一个婢女,但现在已经是主妇。”其说法很容易让人想起中国古典名著《金瓶梅》。偏微分方程的理论,到现在还不是很成熟的。已经成熟的是代数方程,或者说是多项式方程。2的x次方加3的x次方等于1,这样的方程不算是代数方程。高斯证明了代数基本定理,说,n次代数方程f(n)=0,那么,它必然有n个复数根。但是真正求解n次代数方程,不是很简单的一件事情。
历史上一点一滴进步,都凝固了前人的心血。即使历史善于遗忘,也难免记住一些英雄。方程论上最早的英雄塔塔里亚,他解决了三次方程,
塔塔里亚活着的时候被人砍伤,成为哑巴。据说在意大利语中,塔塔里亚就是“口吃者”的意思。他第一个解答这样子的方程:
x^3-21x^2+78x-55=0
但塔塔里亚掌握了3次方程的解法,没有发表,每天压枕头底下暗爽,后来被人剽窃了。世道浇漓,剽窃的人成为当时该领域的学术带头人。塔塔里亚很是愤懑,1530年他约对方在米兰大教堂各出30道3次方程比赛,观者千人。结果是塔塔里亚大获全胜,对方一题未答,成为剽窃史上空前丑闻,也让后人引以为戒。解决了三次方程,很自然地就是解答更高次的方程。
1824年,22岁的Abel自费出版了一个小册子,他证明了,n大于等于5的时候,n次代数方程一般没有根式解。Abel是挪威的数学家,是一个穷牧师的儿子,一生贫病交加,27岁时候死于肺结核。天才生于寒冷,他濒死去的时候,巴黎大学给他一个聘书,聘他去做教授,可是,Abel马上死去。Abel理论对后世有巨大的影响。
天才是互相感应的,Abel死的前一年法国的19岁的伽罗华写了一论文给法兰西科学院。他用一个新的方法回答了能够根式求解的代数方程的条件。其文章太前卫,别人看起来有点南腔北调。投稿2次,人家竟然把原稿给丢失了。
伽罗华是另外一个具有杰出才能的法国数学天才,他引起了群论的诞生。伽罗华比Abel更加富有传奇色彩,当时的法国巴黎各派政治意见不和,习惯卸下门板,在街道上筑起街垒,互扔石头。伽罗华是一个天才,他考巴黎著名的工科学校竟然2次没有考上,上了巴黎师范。后者在当时还不算是名校。伽罗华对政治感兴趣,他是一个镇长的儿子,很有实力。还曾经因为政治上反对波旁王朝“七月革命”而被学校开除,后来又因为政治入了监狱,再上了法庭,在法庭上,他说:“我们是孩子,我们精力充沛,勇往直前。”
21岁的伽罗华在一天晚上,他答应与人决斗,在油灯下匆忙了写下了群论纲领。这个纲领也算是一个遗言,在某个地方他写道:我的时间不多了……
第2天天才在决斗中牺牲。
1932年5月的这天。
一轮血红的残阳挂在某一个枯树的枝头。
整个世界都快哭了。
Abel和伽罗华全在年轻的时候离开人世,他们对数学的影响却无比深远。他们对天才的年轻人有很好的示范作用,特引用词一首,以表哀思:
“原谅话也不讲半句此刻生命在凝聚
过去你曾寻过某段失去了的声音
落日远去人祈望留住青春的一刹
风雨思念置身梦里总会有唏嘘
若果他朝此生不可与你那管生命是无奈
过去也曾尽诉往日心里爱的声音
就像隔世人期望重拾当天的一切
此世短暂转身步进萧刹了的空间
只求望一望让爱火永远的高烧
青春请你归来再伴我一会”
挪威不是一个大国,但它出土了一流的数学家Abel,还有一个大名鼎鼎的是索飞斯?李。李发明的李群是相对论中的基本数学工具之一,很难想象一个不懂得李群的相对论专家会是什么样子。Bianchi对3维的李代数进行分类,发现有九种,这就是九个Bianchi宇宙。
(2)
李群也是微分流形,从微分流形的角度看它,会有一些直观的印象。比如SO(4)群,它是标准的三球面S^3上的等度量群。那么,什么是三球面呢?中学的几何学基本上都是研究2或者3维平直空间里面的几何学。一个点是0维的,一条直线是1维的,一个面是2维的,我们生活的空间是3维的。
2维的面,很简单,有的看上去是弯曲的,比如篮球的表面,或者十三陵地宫里的巨大的圆木柱子的表皮――柱面。 但可以看到,一个柱面是可以用剪刀剪开,然后可以贴在平坦的墙壁上,所以,不太严格地说,柱面的内在的曲率是0,而球面显然不是这样的。球面的内禀曲率不是0,大概就是你不能用剪刀剪开它然后完全地贴到平坦墙壁上。
我刚开始接触黎曼几何时,就是用上面的方法在强行理解“内在的曲率”的。
但还是有一些问题,比方在纸上画一个扇形,然后把扇形卷起来用胶水把对边粘起来。那就是一个圆锥面。 显然圆锥面也是可以用剪刀剪开,然后可以贴在平坦的墙壁上,于是圆锥面的内在的曲率也是0。但它有一个尖点,那里不是光滑的,不能定义内在的曲率,应该排除。
内在的曲率,实际上是指Riemann张量。
那么什么是张量呢?这个东西不是一个容易理解的概念,它可以被放在坐标系下被确定下来。比如一块石头,从东边看它象一只猫,从西边看象一兔子,从南边看它象一个乌龟。那么这个石头的外形,就仿佛是一个张量。
如果一个人试图研究一个正立方体沿着体对角线转动时候的动能,那么,转动惯量就是一个很好的例子。真正考虑这个问题并做过计算,甚至不断变换正立方体的转轴,张量,这个有点神秘的幽灵,会立刻象花朵一样开放在眼前。
自行车的内胎。它的拓扑结构是一个二(维)环面,修车人生活在三维空间里,他看到的是这样一个中间有洞的东西。
拓扑地看,一个自行车内胎与一个篮球皮有什么区别?自行车内胎上剪出一条封闭曲线不一定把它分成2块,但一个篮球面上剪一条封闭曲线一定把球面分成2块。这个暗示了球面与环面在拓扑上是不一样的。一个自行车的内胎实际上是一个柱面弯起来以后把2个头接起来产生的。看的出来,它就是一个圆周s1在另外一个圆周s1上走了一圈后得到的,所以有一个很直观的记号,环面T2=s1 x s1。(环面记做:s1 x s1。因为环面的英语是Torus。所以还可以把2维度的环面简单记为T2。)
那么自行车内胎T2的内禀曲率是不是为0呢???很明显它用剪刀剪2次后是不能完全展成平直的,它不可以完全地贴在平坦的墙壁上。因此,在三维欧几里得平坦空间的自行车内胎,它不是处处内禀曲率为0。当这样说的时候,实际上背后的故事很是悠长。
(3)
在数学物理中,文献很多,有的研究者指导研究生写文章,集中多年精力做的事情就是把低维的情况推广到高维。第一个博士生从3维推到4维,第二个博士生从4维推到5维,年复一年。直到某一年,流年不利,有实力的博士生直接从3维推到n维。于是,这个事情算是彻底干净了。另起炉灶的时光来了。
什么叫高维空间?人类生活的时空一般认为是4维的,但在string理论理论认为宇宙是10维的,有6个维度太小。譬如花园里面的一个很长的自来水管,它是柱面,当然是2维的,但远远地看,人们会以为那是一根1维的绳子呢!!人们感觉不到6个额外维度,但他们组成卡拉比-邱成桐空间。额外维是相对论研究的潮流之一,5维度的时空,也就是1920年代初期最早最原始的kluza-klein理论,具有统一引力和电磁力的神奇功能。5维的kluza-klein时空比人们的感觉到的4维的多出一个维度,多出了那一个维度非常之小。但电子在那里运动的时候就在4维时空表现出电荷来。这多少有点象看一个人在翻滚过山车,他身上有离心力的痕迹。
到了20世纪末,lisa Randall等提出了膜宇宙模型,她们可以允许很大的额外维,这是后话。为了叙述的方便,n维的环面,记为T^n。n维的球面记为s^n。(因为球面的英文是sphere。)在后续的章节里,这样的记号会频繁使用,很多符号,全是可以类推的。
第十章 宇宙学之一
(1)
爱因斯坦把他的方程写出来以后,开始考虑的一件事情是如何从他的方程得到我们生活其中的宇宙。爱因斯坦的雄才大略在这一件事情上体现得淋漓尽致。这种气质在科学家中是极其少见的,赫胥利《天演论》第一句也有过类似的气质:“赫胥黎独处一室之中,在英伦之南,背山而面野,槛外诸境,历历如在机下。乃悬想二千年前,当罗马大将恺彻未到时,此间有何景物?计惟有天造草昧……” 爱因斯坦也是这样,他要在斗室之中,通晓天地之变,阴阳之道,但他用的是数学方法做《天演论》。
广义相对论一直被誉为最美丽的理论,爱因斯坦也被认为是人类历史上最伟大的科学家,他一个人苦心孤诣地研究工作,为我们打开了认识神秘宇宙的大门。当然,与爱因斯坦的广义相对论有竞争的理论,为数也多如牛毛,排除一些地道的民间科学家的理论,这些理论之中,最重要的是班斯和迪克的标量张量理论,在他们那里,牛顿万有引力常数不再是一个常数,而是一个函数,这个想法是很自然的。函数也就是标量场,在广义相对论中,标量场神出鬼没,成就了一批又一批的文章。
广义相对论中,最基本的是时空流形M和它上面的度量 g_ab。M在没有g_ab的时候,上面是没有距离概念的,也就是没有过去和未来。M仅仅是一个微分拓扑空间,可能把它想象成一个4维的自行车内胎或者篮球皮,等等等等。M上面具有光滑的微分结构。至于它上面有多少光滑的微分结构,这个问题就过于艰深了。一般地说,在最简单的平坦Minkowski流形上,有无穷多个微分结构。这个工作是得到Fields奖的。
聪明而细心的看客马上会问,那么,M上的所有微分同胚变换是不是构成一个李群?答案是肯定的,但是,这个李群是无限维的,这有一点不象su(2)那样简单了,su(2)李群是3维的。这个问题背后有冗长的不厌其烦的计算和深刻的数学。在这里,注意力是集中的,我们要关心的是宇宙学。
但是,宇宙是有时间的,为了定义时间,抛弃热力学时间箭头抑或电磁辐射时间箭头。在相对论里,度量 g_ab的号差是Lorentz的,也就是说,把度量看成一个4乘4的矩阵,在线性代数里面,有一个惯性定理,这个定理说,在相似变换下,矩阵的正负特征值的个数是不变的。度量是Lorentz的,相当说,特征值有一个是负的,其他三个是正的,写成(-,+,+,+)。其中,负号代表时间。
是否每一个流形都可以配上一个Lorentz号差的度量?或者说存在整体定义的时间?时间作为一个矢量场整体存在,矢量场整体无奇点,指数为0.Hopf-poincare的指数定理说,指数和等于欧拉数。所以一个流形可以配上一个lorentz号差的度量,必然要求流形M的欧拉数为0。
M的拓扑结构对g_ab的限制,这样的问题连爱因斯坦也没有考虑过。粗浅地说,这样的问题就好象是一个金饭碗,但你会解决这样的问题时候,这往往意味着你已经长大成人了,可以出去讨生活了,并且在一定程度上可以自我保证衣食无忧了。
(2)
w.pauli很年轻的时候,曾经一系列介绍相对论的文章,集中为写过一本书,叫《相对论》。这本书现在已经被人淡忘,往事不要再提,人生已多风雨。我有一本他的书,每每看到这本由内而外发黄的书,1920年的Pauli研究生在油灯下笔耕不辍的情景就跃然眼帘,让人不由得想起四字镏金大字:英雄时代!
在本书中,相对论建立的1905年到1970年代霍金提出黑洞辐射,这短短的一甲子左右的光阴,我称之为“英雄时代”。这段时间中,量子力学也诞生了一大批人类精英。
特仿人民英雄纪念碑的碑文一则:
八九十年以来,在爱因斯坦理论中牺牲的英雄们永垂不朽!
三四十年来,在Hawking和penrose的奇性理论中牺牲的人民英雄们永垂不朽!
由此到廿一世纪初年,从现在起,为了理解广义相对论,争取人类精神独立和自由幸福,在历次斗争中牺牲的英雄们永垂不朽!
Geroch等在1973年曾经证明了一个定理,说的是,如果时空(M,g-ab)是整体双曲的,那么,在拓扑上必然有M=RXE,其中,E是一个3流形,是类空的。这个定理的意思是说,假如你要有一个定义良好的初值问题,那么,时空的拓扑必须要是一个RXE。其中R就是时间,用参数t表征,每一个等t面是cauchy曲。这个定理,最直白的意思,就是想要给出了唯一的时间演化,“已知现在的情况,能够唯一确定未来。必须要有一个拓扑限制”,在这个意义上,这个定理对算命先生极其有利。但是可惜的是算命先生不是谦虚好学之人,多数不知道偏微分方程理论背后的巨大天机。
在宇宙学上,人们往往不考虑违背Geroch1973年的这个定理的奇异的宇宙,例如拓扑为T4或者S4。因为人们相信,在宇宙之中,存在良好的因果关系,可以很好地处理初值问题。
(3)
哥白尼原理,也叫宇宙学原理,它说:我们的宇宙,在空间上是均匀的,各向同性的。这一个原理是有一定实验根据的,那就是微波背景辐射。当然这个背景也不是绝对均匀的。但在数学上,这样的空间就是具有最大对称性空间。
人类生活在其中的宇宙,浩瀚神秘,每当仰望星空,很多人都会好奇,宇宙,到底是有限还是无限的,宇宙是不是自相似的具有分形结构,是否天圆地方,是否有沉睡在宇宙深处的黑暗能量,外星球有没有象人类同样的孤寂和智慧。在中国古代,就有《天问》的说法,问天问地,十分好奇的一种心态。
目前的观测似乎说明,我们的宇宙3维空间部分具有最大对称性。单连通3流形具有最大对称性的,只有3种,E3,S3,H3。这个分类的结论与Thurston有联系。Thurston把单连通3维的几何体分成8种,前面的3种就是E3,S3,H3,允许6个独立killing场,具有最大对称;后面的5种分别为S2×S1, H2×S1, Sol, Nil 和 SL(2,R),允许3个独立killing场,具有均匀性(spatially homogeneous),但不具有各向同性。所有这一切的前提,全是研究单连通流形。至于不是单连通的,或者其他情景,只能让人归结到poincare猜想。这个问题是非常有趣的,顺带地,毕达哥拉斯最早知道,正多面体只有5种,这相当于冰山的一角,推广到高维空间,问有多少个超正多面体。冰山暴露出来,一定让很多人大吃一惊,这样的冰山,可以化神气的泰坦尼客为腐朽,把繁华变成南柯一梦。
话说回来,我们的宇宙,在空间上是什么样子的呢?真的是E3,S3,H3的其中一种吗?罗伯逊和沃克RW度量描述了这3种情况。RW度量的给出,纯粹是从对称性的考虑和宇宙膨胀的事实中写出来的。这个RW度量不是真空爱因斯坦方程的解。
我大学时物理还挺好的呢
不过想说一下我理解的一个观点:时空是物质运动的存在形式,离开了物质,似乎就不再有什么时空了~~~~,不知道对不对?
这好象是哲学观点,好象还是马克思等的观点。 我深信这一点。
哎,科学和信仰~~~~,
我早就看不懂了。
不就是让人不懂吗?咱们也搞‘生化’武器,放翻他们‘无理数’。
催帐,师兄的生命系列为啥不继续了?
我觉得既然写,就是为了让大家明白。不是写给自己看的。如果看不懂,那还不如不写。
至于我实在是写不下去了,原因是最近看到一些新的进展,很有意思,但是实在没有时间去细究。把老的东西写出来又觉得不好意思。只好先放着。
而且看完萨苏的文章,实在是不敢再提笔写什么了。
凡是看不懂的一律献花。
小神同志啊,看你的乐善度和积分这几天涨得多快,眼看就要以新人身份打入50强了。唉,长江后浪推前浪啊
按说不该呀,看着我党新人茁壮成长该高兴啊!
我昨天浪费两个小时看了,什么内容也没有,没有相对论,也没有相对论故事。牛烘烘磨叽半天,只有又酸又臭的一句话:我很懂。
不过还是谢谢楼主转帖。题目毕竟很吸引人,希望楼主有空给写一篇真的,对题的。
这 篇 文 章 有 什 么 原 因 被 加“ 精”, 还 有 多 人 献 花? 有 人 能 告 诉 我 吗? 甚 至 文 章 里 的 网 址 竟 然 登 录 不 上 去。
第十一章 宇宙学之二
(1)
RW度量可以描述我们的宇宙,但它与爱因斯坦方程没有从属关系,也就是说,即使爱因斯坦方程不对,RW度量也可以是正确的。它们两个的地位独立,类似于男人和女人的关系,男人和女人的结合,出来的结果是一个婴孩,就是富里德曼方程。富里德曼方程描述宇宙到底是怎么样子在膨胀。因为单知道膨胀是不够。现在发现膨胀是加速的,宇宙学就会给现在的科学提出一个大问题。这个问题总得来说是与暗物质和暗能量有关系。李政道曾经提过21世纪的物理学的大问题,暗物质暗能量好象也是其中之一,其他他说的好象有夸克幽禁和渐近自由。渐近自由理论已经得到诺贝尔物理奖。同样,暗物质暗能量问题一旦解决,肯定也能得到诺贝尔物理奖。在相对论领域,能够得诺贝尔物理奖的还有引力波或者引力子的发现。不说诺贝尔物理奖,宇宙学的这个问题可以与生命的起源,DNA的编排,生物为什么必然要死亡等问题类比,是文明的指标。
莎士比亚有一个很精彩很著名的句子,好象是说:“死掉还是活着,这是一个问题!”对于宇宙来讲,死掉还是活着这同样也是一个问题。宇宙的命运是少数人扣人心弦的谈资。理论是一套接连一套。近代宇宙学,大爆炸模型已经被很多人接受,被称为标准宇宙模型,其他还有一些非标准模型,其中以前最有影响的是稳恒态宇宙模型,它由英国天文学家霍伊尔(Hoyle,Sir Fred 1915~)、美国天文学家邦迪(Bondi,Hermann 1919~)以及在奥地利出生的美国天文学家戈尔德(Gold,Thomas 1920~)提出的。在大爆炸宇宙模型提出的初期,人们曾根据哈勃常数推算宇宙的年龄,然而由于哈勃常数在测定远距离星系的视星等与红移关系时,采用了造夫变星决定距离的偏差太大,以致得到的哈勃常数太大,由此估算出的宇宙年龄只有20亿年,比地球的寿命还短,这给当时的大爆炸宇宙学说带来困难,稳态宇宙学说应运而生。
稳态宇宙学说认为,既然时间和空间平等,而宇宙物质在空间分布是均匀且各向同性的,那么宇宙在时间上也应是均匀不变的,这就是所谓的“完全宇宙学原理”。宇宙既然不断地在膨胀,同时又要求保持宇宙物质分布上的均衡不随时间改变,必然要求物质在不断地产生,从而保持宇宙物质的密度随时间不变。稳态宇宙学不能清楚地说明,物质在哪里、以何种方式产生,以什么形态出现。在这个模型里,宇宙不会死亡。
这些宇宙模型,给人的感觉有点空洞,偶然会让人对人生也充满怀疑的颓废。情绪化而理性不够的人全部都不行了,转而只能问一些最基本最天然的问题,比如,宇宙是不是无限大?宇宙是不是平坦的?
粗劣地说:
1.可观测的宇宙是有限的。2.RW宇宙是共形平坦的。
总得说来,宇宙学和天文学的关系密切。宇宙学它的历史悠久漫长,在这个历史过程中,爱因斯坦引入了宇宙学常数,修改了他的引力场方程。他的这个举动,使得整个宇宙学的历史跌宕起伏。宇宙学和黑洞理论一样,给相对论以一个应用的舞台。在某个时候,爱丁顿和钱德拉塞卡有过著名的争论,相对于沉默的钱德拉塞卡,爱丁顿这样尖锐地说:“你是以恒星的角度看问题,而我,是从大自然的角度看问题。”也许,这句话在这里充满了哲理,对于黑洞,要从恒星的角度去看,而对于宇宙,却要从大自然的角度去看。
第十二章 黑洞的惊鸿一瞥
(1)
在几乎所有的物理学的书籍中,可能费曼的三卷物理学讲义最引人注目,这个讲义大致是1960年代他在加洲理工大学给大学一年级与二年级的学生做的演讲。当时大概有180个学生聚集在一个大的演讲厅里,一周两次去听物理学家费曼的讲座。这些学生在听完以后分成15到20个人一组在助教的指导下背诵和理解这些讲座。费曼说在这些讲座的最主要的任务是要使得那些从高中来到加洲理工的非常聪明的学生保持他们对物理学的热情。因为这些学生他们曾经听说过物理学是多么有趣以及激动人心――相对论,量子力学,以及其他现代的观念。但是一般地,在他们真正进入大学的前期2年的入门课程里,他们往往听到的是让人沮丧的缺乏现代新鲜感的课程。这些学生们被迫着去研究斜面,静电学,诸如此类有点罗嗦的东西,其实这些东西有的学生在高中的时候就了解的很清楚了。所以,一般来说,大学物理系的前2年非常徒劳。费曼用他的精彩讲座试图来改变这样的局面。他的讲座里,也讲了一两次广义相对论。
古典的传统的物理学确实有非常令人乏味的地方。在大学里,很多年轻学生对诸如“黑洞”,“虫洞”这样的事物充满激情和美丽幻想。
这就是生活。
(2)
黑洞。
最早使用这个名字的人是费曼的导师,后者可以被称为“美国相对论之父”,因为爱因斯坦之后,几乎在美国的所有一流的相对论专家,全是他的徒弟和徒孙。他就是惠勒。附带地说,我上研究生的时候,在学校里听一位印度学者做相对论的报告,这位学者在开场白里戏称刘辽为“Father of Chinese General Relativity”,当时座下的刘辽教授当即表示了谦虚地反对,于是,大家一笑而过。惠勒1933年研究生毕业以后就开始大展宏图,在二战期间做过原子弹的研究工作。战争结束以后用计算机模拟过黑洞。因为,黑洞是恒星演化的产物,恒星的核反应,这其实就是原子弹的原理。所以,对于黑洞一开始的研究,是很物理的,而不是象现在,偏于几何和数学化。
“黑洞”这个词,在法语里感觉起来比较低级。但钱德拉塞卡曾经说过,广义相对论作为一门理论,其实验依据不是非常充足,但他相信,广义相对论是真理,为什么?因为从他做黑洞微扰的经验,他得到了一些震撼人心的美的体验。
黑洞一出现,人们普遍认为,这几乎就是世界末日的真实体验,以史瓦西黑洞为例,当观察者进入到离黑洞中心距离为R=2M的时候,他就会在人类的世界里消失。道理是很简单的,在R小于2M的时候,每一个等R面全是同时面,也就是说,坐标R在那个时候,已经不是空间,而表示时间了,所以,观察者不可能在同一时间出现在相等的R处,于是,时间流动,这个观察者必然要沿着R单调变化的方向前进,于是,它必然要撞上R=0的那个可怕的地方,这个地方,是这个观察者时间的终点,被称为奇点。
美国康奈尔大学的研究者Rindler,他给R=2M的那个地方取了一个名字,叫做地平线,英文是Horizon,原始的意思是说,这个观察者掉进了R=2M这个曲面之后,黑洞外面的人再也见不到他了,就好象太阳在地平线之下,地球上的人就看不见了。后来,Horizon被翻译为一个更加学术化的名词“视界”。
如果说有什么记号能够表示黑洞,最简单的数学可能是:
奇点+视界=黑洞。
(3)
黑洞,就好象是达芬奇的《梦娜丽莎的微笑》这样的历史名画,或者是贝多芬的《命运》这样的交响乐章,它充满了美,同时充满了对命运的无情嘲弄。在1970年代以前,人们开始接受一个这样的观念,黑洞,是恒星演化的终结。黑洞是一个完全黑色的东西,
但是,在1974年2月,在牛津大学有第一次的量子引力会议,这样的会议在6年以后还有一次,会议的组织者是该校的爱沙姆,西阿玛和彭罗斯等。在这个会议上,霍金报告了一个惊人的消息,黑洞不是完全黑的,它会向外发出辐射,并且,这个辐射是热辐射,也就是说,它不会带出什么有意思的信息。当然不排除霍金在这个回忆之前已经吐露了这个研究结论。
霍金的这个发现,给他引得了世界性的声誉。这个时候以后,大众的视线,开始聚焦在这个在轮椅上的严重失声肌肉严重萎缩的英雄人物身上,历史显得疯狂起来。因为,霍金传递了一个讯号:黑洞,不是恒星演化的终结,而只是一个中间过程,我们人类,似乎还有希望。
对文章得好坏不同的人有不同的看法,这也很正常。
欢迎草民兄对文章中具体内容谈谈自己的看法。