淘客熙熙

主题:【合作】玉米种子 PH4CV专利翻译合作 -- 急风劲草

共:💬42 🌺134 🌵1
全看分页树展 · 主题 跟帖
家园 【原文】CLAIMS

Claims:

1. A seed of maize inbred line designated PH4CV, representative seed of said line having been deposited under ATCC Accession No. PTA-4673.

2. A maize plant, or a part thereof, produced by growing the seed of claim 1.

3. The maize plant of claim 2, wherein said plant has been detasseled.

4. A tissue culture of regenerable cells produced from the plant of claim 2.

5. A protoplast produced from the tissue culture of claim 4.

6. The tissue culture of claim 4, wherein cells of the tissue culture are produced from a tissue selected from the group consisting of leaf, pollen, embryo, root, root tip, anther, silk, flower, kernel, ear, cob, husk and stalk.

7. A maize plant regenerated from the tissue culture of claim 4, said plant having all the morphological and physiological characteristics of inbred line PH4CV, representative seed of said inbred line having been deposited under ATCC Accession No. PTA-4673.

8. A method for producing an F1 hybrid maize seed, comprising crossing the plant of claim 2 with a different maize plant and harvesting the resultant F1 hybrid maze seed.

9. A method of producing a male sterile maize plant comprising transforming the maize plant of claim 2 with a nucleic acid molecule that confers male sterility.

10. A male sterile maize plant produced by the method of claim 9.

11. A method of producing an herbicide resistant maize plant comprising transforming the maize plant of claim 2 with a transgene that confers herbicide resistance.

12. An herbicide resistant maize plant produced by the method of claim 11.

13. The maize plant of claim 12, wherein the transgene confers resistance to an herbicide selected from the group consisting of imidazolinone, sulfonylurea, glyphosate, glufosinate, L-phosphinothricin, triazine and benzonitrile.

14. A method of producing an insect resistant maize plant comprising transforming the maize plant of claim 2 with a transgene that confers insect resistance.

15. An insect resistant maize plant produced by the method of claim 14.

16. The maize plant of claim 15, wherein the transgene encodes a Bacillus thuringiensis endotoxin.

17. A method of producing a disease resistant maize plant comprising transforming the maize plant of claim 2 with a transgene that confers disease resistance.

18. A disease resistant maize plant produced by the method of claim 17.

19. A method of producing a maize plant with decreased phytate content comprising transforming the maize plant of claim 2 with a transgene encoding phytase.

20. A maize plant with decreased phytate content produced by the method of claim 19.

21. A method of producing a maize plant with modified fatty acid metabolism or modified carbohydrate metabolism comprising transforming the maize plant of claim 2 with a transgene encoding a protein selected from the group consisting of fructosyltransferase, levansucrase, alpha-amylase, invertase and starch branching enzyme or encoding an antisense of stearyl-ACP desaturase.

22. A maize plant, with modified fatty acid metabolism or modified carbohydrate metabolism, produced by the method of claim 21.

23. The maize plant of 22 wherein the transgene confers a trait selected from the group consisting of waxy starch and increased amylose starch.

24. A maize plant, or part thereof, having all the physiological and morphological characteristics of the inbred line PH4CV, representative seed of said inbred line having been deposited under ATCC Accession No. PTA-4673.

25. A method of introducing a desired trait into maize inbred line PH4CV comprising: (a) crossing PH4CV plants grown from PH4CV seed, representative seed of which has been deposited under ATCC Accession No. PTA-4673, with plants of another maize line that comprise a desired trait to produce F1 progeny plants, wherein the desired trait is selected from the group consisting of male sterility, herbicide resistance, insect resistance, disease resistance and waxy starch; (b) selecting F1 progeny plants that have the desired trait to produce selected F1 progeny plants; (c) crossing the selected progeny plants with the PH4CV plants to produce backcross progeny plants; (d) selecting for backcross progeny plants that have the desired trait and physiological and morphological characteristics of maize inbred line PH4CV listed in Table 1 to produce selected backcross progeny plants; and (e) repeating steps (c) and (d) three or more times in succession to produce selected fourth or higher backcross progeny plants that comprise the desired trait and all of the physiological and morphological characteristics of maize inbred line PH4CV listed in Table 1 as determined at the 5% significance level when grown in the same environmental conditions.

26. A plant produced by the method of claim 25, wherein the plant has the desired trait and all of the physiological and morphological characteristics of maize inbred line PH4CV listed in Table 1 as determined at the 5% significance level when grown in the same environmental conditions.

27. The plant of claim 26 wherein the desired trait is herbicide resistance and the resistance is conferred to an herbicide selected from the group consisting of imidazolinone, sulfonylurea, glyphosate, glufosinate, L-phosphinothricin, triazine and benzonitrile.

28. The plant of claim 26 wherein the desired trait is insect resistance and the insect resistance is conferred by a transgene encoding a Bacillus thuringiensis endotoxin.

29. The plant of claim 26 wherein the desired trait is male sterility and the trait is conferred by a cytoplasmic nucleic acid molecule that confers male sterility.

30. A method of modifying fatty acid metabolism, phytic acid metabolism or carbohydrate in maize inbred line PH4CV comprising: (a) crossing PH4CV plants grown from PH4CV seed, representative seed of which has been deposited under ATCC Accession No. PTA-4673, with plants of another maize line that comprise a nucleic acid molecule encoding an enzyme selected from the group consisting of phytase, fructosyltransferase, levansucrase, alpha-amylase, invertase and starch branching enzyme or encoding an antisense of stearyl-ACP desaturase; (b) selecting F1 progeny plants that have said nucleic acid molecule to produce selected F1 progeny plants; (c) crossing the selected progeny plants with the PH4CV plants to produce backcross progeny plants; (d) selecting for backcross progeny plants that have said nucleic acid molecule and physiological and morphological characteristics of maize inbred line PH4CV listed in Table 1 to produce selected backcross progeny plants; and (e) repeating steps (c) and (d) three or more times in succession to produce selected fourth or higher backcross progeny plants that comprise said nucleic acid molecule and have all of the physiological and morphological characteristics of maize inbred line PH4CV listed in Table 1 as determined at the 5% significance level when grown in the same environmental conditions.

31. A plant, with modified fatty acid metabolism, modified phytic acid metabolism, or modified carbohydrate metabolism, produced by the method of claim 30, wherein the plant comprises the nucleic acid molecule and has all of the physiological and morphological characteristics of maize inbred line PH4CV listed in Table 1 as determined at the 5% significance level when grown in the same environmental conditions.

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河