主题:【合作】玉米种子 PH4CV专利翻译合作 -- 急风劲草
通过SSR的基因标记物(Genetic Marker Profile through SSR)
The present invention comprises an inbred corn plant which is characterized by the molecular and physiological data presented herein and in the representative sample of said line deposited with the ATCC. Further provided by the invention is a hybrid corn plant formed by the combination of the disclosed inbred corn plant or plant cell with another corn plant or cell and characterized by being heterozygous for the molecular data of the inbred.
In addition to phenotypic observations, a plant can also be identified by its genotype. The genotype of a plant can be characterized through a genetic marker profile which can identify plants of the same variety or a related variety or be used to determine or validate a pedigree. Genetic marker profiles can be obtained by techniques such as Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length Polymorphisms (AFLPs), Simple Sequence Repeats (SSRs) which are also referred to as Microsatellites, and Single Nucleotide Polymorphisms (SNPs). For example, see Berry, Don, et al., “Assessing Probability of Ancestry Using Simple Sequence Repeat Profiles: Applications to Maize Hybrids and Inbreds”, Genetics, 2002, 161:813-824, which is incorporated by reference herein in its entirety.
Particular markers used for these purposes are not limited to the set of markers disclosed herein, but are envisioned to include any type of marker and marker profile which provides a means of distinguishing varieties. In addition to being used for identification of Inbred Line PH4CV, a hybrid produced through the use of PH4CV, and the identification or verification of pedigree for progeny plants produced through the use of PH4CV, the genetic marker profile is also useful in breeding and developing single gene conversions.
Means of performing genetic marker profiles using SSR polymorphisms are well known in the art. SSRs are genetic markers based on polymorphisms in repeated nucleotide sequences, such as microsatellites. A marker system based on SSRs can be highly informative in linkage analysis relative to other marker systems in that multiple alleles may be present. Another advantage of this type of marker is that, through use of flanking primers, detection of SSRs can be achieved, for example, by the polymerase chain reaction (PCR), thereby eliminating the need for labor-intensive Southern hybridization. The PCR detection is done by use of two oligonucleotide primers flanking the polymorphic segment of repetitive DNA. Repeated cycles of heat denaturation of the DNA followed by annealing of the primers to their complementary sequences at low temperatures, and extension of the annealed primers with DNA polymerase, comprise the major part of the methodology.
Following amplification, markers can be scored by gel electrophoresis of the amplification products. Scoring of marker genotype is based on the size of the amplified fragment as measured by molecular weight (MW) rounded to the nearest integer. While variation in the primer used or in laboratory procedures can affect the reported molecular weight, relative values should remain constant regardless of the specific primer or laboratory used. When comparing lines it is preferable if all SSR profiles are performed in the same lab. The SSR analyses reported herein were conducted in-house at Pioneer Hi-Bred. An SSR service is available to the public on a contractual basis by Paragen (formerly Celera AgGen) in Research Triangle Park, N.C.
Primers used for the SSRs reported herein are publicly available and may be found at the World Wide Web at agron.missouri.edu/maps.html (sponsored by the University of Missouri), in Sharopova et al. (Plant Mol. Biol. 48(5-6):463-481), Lee et al (Plant Mol. Biol. 48(5-6); 453-461), or reported herein. Some marker information may be available from Paragen.
Map information is provided in centimorgans (cM) and based on a composite map developed by Pioneer Hi-Bred. This composite map was created by identifying common markers between various maps and using linear regression to place the intermediate markers. The reference map used was UMC98. Map positions for the SSR markers reported herein will vary depending on the mapping population used. Any chromosome numbers reported in parenthesis represent other chromosome locations for such marker that have been reported in the literature or on the Maize DB. Map positions are available on the Maize DB for a variety of different mapping populations.
The SSR profile of Inbred PH4CV can be used to identify hybrids comprising PH4CV as a parent, since such hybrids will comprise the same alleles as PH4CV. Because an inbred is essentially homozygous at all relevant loci, an inbred should, in almost all cases, have only one allele at each locus. In contrast, a genetic marker profile of a hybrid should be the sum of those parents, e.g., if one inbred parent had the allele 168 (base pairs) at a particular locus, and the other inbred parent had 172 the hybrid is 168.172 (heterozygous) by inference. Subsequent generations of progeny produced by selection and breeding are expected to be of genotype 168 (homozygous), 172 (homozygous), or 168.172 for that locus position. When the F1 plant is used to produce an inbred, the locus should be either 168 or 172 for that position.
In addition, plants and plant parts substantially benefiting from the use of PH4CV in their development such as PH4CV comprising a single gene conversion, transgene, or genetic sterility factor, may be identified by having a molecular marker profile with a high percent identity to PH4CV. Such a percent identity might be 98%, 99%, 99.5% or 99.9% identical to PH4CV.
The SSR profile of PH4CV also can be used to identify essentially derived varieties and other progeny lines developed from the use of PH4CV, as well as cells and other plant parts thereof. Progeny plants and plant parts produced using PH4CV may be identified by having a molecular marker profile of at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99.5% genetic contribution from inbred line PH4CV.
- 相关回复 上下关系8
🙂【翻译】PH4CV性能实例 1 急风劲草 字235 2010-09-20 12:51:42
🙂【翻译】自交系比较 1 急风劲草 字1288 2010-09-20 13:04:43
🙂【翻译】杂交系比较 1 急风劲草 字2055 2010-09-20 13:03:40
🙂【翻译】通过SSR的基因标记物
🙂【翻译】种子储蓄(Deposits) 1 急风劲草 字2543 2010-09-20 12:54:53
🙂【原文】CLAIMS 1 急风劲草 字7483 2010-09-20 12:45:51
🙂【译文】权利要求 急风劲草 字12080 2010-09-26 19:30:20
🙂非翻译区 急风劲草 字0 2010-09-20 12:14:40