主题:【原创】死亡起源 The Origin of Death -- az09
拉马克包括米丘林的进化理论的被大批特批,但是这是非常诱人的想法。 尽管最近这些年的研究也在非常少的地方证明了获得性遗传,但现代基因理论体系里,对获得性遗传不置可否,认为从来不是是生物进化的主要方式,这个DNA甲基化从分子生物学角度可以更深层次的对拉马克当时提出的总结性理论重新理解。
如果我理解的正确,作者是不是说过去生物进化所积累的对所有所经历情况的准备,都已经储备在基因里,在合适的时候打开(也就是甲基化)就可以显现了?这大概是太阳底下没有新鲜事在基因层面的反应吧。不过本人对这个结论存疑 -- 这个观点主要是为了平衡动物的极端复杂性,和基因突变的偶然性和偶发性,不过这个解决方案可能过于昂贵。
的确值得存疑,这个方案的确挺昂贵的, 所以我用了“可能”两个字。
但是,再细想想,有更廉价的方案吗?比如单纯靠基因突变?
我在文章里面写了下面一段,我们思考一下,如何不用昂贵的方案,采用“廉价”的方案去处理?
所以,以其相信高等复杂生物的演化是通过基因突变累积的,我宁可相信他们主要是通过类似“转座子”(Transposon)的方式,以这样的基因的“剪切与粘贴”或者“复制与粘贴”造成的,至少,这样看起来还靠谱些。
看起来用廉价的方案很难做到,不是吗?
那我们再看事实:事实上,我们体内有许多基因都是演化上保守的,也就是,在演化过程中,基本不变的,要维持这种不变,本身就需要一个相对‘昂贵“的成本。
另外,还有一个更加诡异的事实,是在所谓的”非编码DNA“,也就是所谓的垃圾DNA中,也有许多保守序列,这就更奇怪了。毕竟,我们的”有用“的DNA只占总数的1.5%而已,在非编码区维持这些保守序列,是很奇怪,也是成本很高的事情。
那么,事实上,有没有冗余呢?我认为是有的。比如,我们经常可以看见各种各种样的返祖现象,比如毛孩,我们其实在必要的情况下,还是可以把有长毛发的基因打开的,只是我们不需要了而已。这个基因并没有消失,还藏在我们体内,这就是一种冗余数据的表现。相信这样的冗余数据,还有许多。
还有,我们每一个体细胞,DNA都是一样的,但是,分化后的体细胞,功能各不相同,这意味着这些体细胞,在“数据库”上有相当大的冗余的,再加上它还需要一定的适应性,则需要更大规模的冗余...........
总之,生命似乎为了追求更大的稳定性和适应性,采用了一个大冗余的做法。虽然昂贵,但是却似乎很值得。
这是我的看法。呵呵。
“根据细胞学原理,这个细胞,是从几十亿年前,由某个细胞,一直分裂而来的!它穿过了亿万年的时空,经历过可能超过上百亿次的分裂,以“永生”的方式生存到现在,然后才能被我们观察到。”
这段我不是太懂,但觉得结论可能有问题。 举个例子, 某个细胞一变二,二变四。
如果每次分裂可以分清其中某个就是祖先。那四个中有一个生活了两代,一个生活了一代,两个是新生。 但接下来自然选择可能只留下两个新生的。 从而不一定有幸运儿可以代代永生下去。
如果每次分裂不可以分清其中某个就是祖先。那每次分裂都可以看作祖先的死亡,两个细胞都是新生。 如此一来,四个细胞都是新生。 现存的所有细胞也都是新生细胞,不曾生活过亿万年。
当然也可以反过来说每次分裂出来的两个细胞都是永生祖先的克隆。那么所有现存细胞都生活了亿万年。 对于亿万年都没什么代际差异的物种,这么说也可以接受。 但对于代间差异明显的物种,个人觉得这种说法的文学意味大于实际意义了。
望解惑,谢谢。
的确不好理解,不过这个问题已经有人问过了,请看前页,或者点击链接:
链接 ,您可以看见我的回答。
续上, 死亡起源(九)
(注:本章涉及到一些关于“激素”和“细胞间通讯”以及细胞的自杀——“凋亡”的概念,如果不清楚,请参考下两篇:死亡起源(十一),和死亡起源(十三)因为这些概念是混在一起的,很难剥离,这篇我只是试图单独的描述生殖与死亡的关系。所以没有做过多的解释和介绍。)
简单讨论完表观遗传后,我们继续讨论我们的主要话题:衰老与死亡。前文我们已经提到了,尽管已经有了许多的研究告诉我们,我们的衰老和死亡和许多因素都有关系,而且这些因素都有大量的研究做依据,不过,穿过重重迷雾与噪声,从演化的角度上看,我观察到的与衰老与死亡相关的最重要的钥匙却是如下几项:
1. 生殖;2. 压力;3. 遗传与变异 (包括表观遗传)。
其实这三者之间的关系是相互影响的,并不能完全剥离,我现在试图把它们一个个分开来讲。
3.2.2 生殖与寿命的关系。
经过前几章漫长的讨论,我们已经观察到了一些可以揭示生命本质的有趣现象。现在,我们讨论生殖与寿命的关系。其实,在前面的讨论中,我们已经清楚的看见了生殖与寿命的关系了。比如美国西北大学的线虫衰老死亡报告,揭示了线虫的衰老和死亡,是由线虫生殖干细胞触发了一个死亡开关所致。Sockeye三文鱼的产卵后的自杀,显然也是和生殖有关。进一步讨论生殖对寿命的影响之前,我们先简单介绍一下关于生殖的一些基本概念。
生殖按分类主要可以分为两大类: 1. 无性生殖;2.有性生殖。关于无性生殖以及有性生殖的起源以及对死亡产生的影响,前面已经讨论了很多了。现在我们再进一步讨论生物的“生殖策略”。
采用有性生殖的物种的生殖策略主要又可以分为两大类,单次繁殖和多次繁殖。:
单次繁殖的生物在一生中只进行一次生殖,例如一年生植物(包括所有的谷物作物)、一些种类的鲑鱼、蜘蛛和竹子等。这些生物通常在繁殖后很快便会死亡。
多次繁殖的生物会按照连续的周期(例如每年或每季度)产生后代,例如多年生植物等。多次繁殖动物可以适应多个季节以及周期性的环境变化。
现在我们比较一下单次繁殖和多次繁殖这两种策略。理论上说,单次繁殖的策略,它们的演化速度相对会更快一些,而多次繁殖的策略,则单位能量消耗要相对小一些,机会损失也小一些。这两种策略各有优缺,至于谁优孰劣,还要放到各自具体的竞争环境中才知道。
当我们观察单次繁殖动物,比如大部分昆虫类,我们往往会发现,它们中的许多,似乎没有严格意义上的衰老现象。它们的存在的唯一目的似乎就是为了生殖,生殖一完成,它们的使命包括生命也就该结束了。许多昆虫似乎刚才还是生龙活虎,完全没有衰老迹象,而生殖完成后,往往在极短的时间内就死亡了,他们似乎也和线虫一样,不存在衰老的概念,它们的死亡只是一个开关的打开和闭合。有些单次繁殖的生物,比如许多龙舌兰属(Agave)的植物,它们的寿命可能很长,可能需要100年才能成熟。不过,它们一旦成熟并繁殖后,就会立刻死亡。单次繁殖的竹子也是类似,有一年它们开花繁殖导致的大量死亡,还唱红了一首歌:《熊猫咪咪》。至于单次繁殖的Sockeye 三文鱼,它们实际上不是严格意义上的单次繁殖动物,而是多次繁殖动物采用了单次繁殖的策略。
即便是多次繁殖的生物,(高等的哺乳动物除外),它们的存在似乎也只是为了生殖,许多多次繁殖的低等动物一旦停止生殖,往往就意味着死亡。另外,在低等的多次繁殖的生物身上,衰老现象同样也不是那么明显。前面已经讨论过了,我们可以观察得到单次繁殖的秀丽隐杆线虫只有两三周的寿命并且在生殖后快速死亡。而它们的近亲,多次繁殖的美洲钩线虫的寿命却可以长达15年,美洲钩虫日均产卵可以高达5000~10000个。我们还可以观察得到同样低等的多次繁殖的血吸虫竟具有长达几十年的寿命,这几乎和它的宿主,早期人类的寿命相当了 。而且,具有超强再生功能的血吸虫也似乎也不会衰老。另外血吸虫在中间宿主钉螺体内是进行再生性质的无性繁殖的,在终宿主体内才进行有性生殖。另外,而秀丽隐杆线虫如果进入了所谓的“dauer幼虫”状态,它也会停止老化。总之,生命之奇妙,经常让我们难以想象。
而真正意义上的衰老现象,我们可能要在哺乳动物身上寻找,在哺乳动物身上,我们可以观察得到较为严格意义上的衰老现象——就是我们所熟悉的,那种渐进性的衰老。关于这个话题我还会在文章后面讨论。
总之,我们可以观察到,生殖是生命的一个非常重要的环节,许多生物的寿命,都和生殖相关。它们为了生殖,或者如单次繁殖的线虫般,产卵后突然自杀;或者如许多多次繁殖生物一般,尽量延缓开关的打开,延长自己的寿命。有些寄生虫的寿命策略和许多大型乔木的策略有些类似,因为延长寿命符合利益最大化,所以它们就延长寿命 (推迟打开死亡开关)。所以,我们可以观察到,同属于线虫纲的秀丽隐杆线虫只有20天的寿命,而美洲钩线虫则可以有长达15年的寿命。
如果上面的例子还不足够说明问题的话,我们再观察一些例子。相信有人或许会质疑,这些生物寿命差别巨大,很可能是因为它毕竟是不同的物种,或许它们各自有各自的非常特别的基因,才导致了这么巨大的差别。那么,下面我们要观察的的例子,则会告诉大家,即便是同一个物种,甚至可能是同一个DNA拷贝,寿命也可以有巨大差别,而且这个差别,可以高达几十到100倍!
关于生殖对寿命的影响,一个有趣的例子就是蚂蚁和蜜蜂。和大多数单次繁殖的昆虫不一样,蜜蜂和蚂蚁都是“多次”繁殖的。虽然它们大多一生只受精一次,但是,它们却可以把精子或者受精卵泡存储起来,慢慢的使用,达到“多次”繁殖的目的。(白蚁或许会多次交尾,成为正真意义上的多次繁殖昆虫)。同是雌蚁的蚁后与工蚁的基因完全一样,但是一般蚂蚁的蚁后的寿命可能长达15年,是工蚁的100倍。而白蚁的蚁后的寿命甚至可能长达50到70年。蜜蜂的寿命也是类似,同是雌蜂的蜂后和工蜂之间也存在着巨大的寿命差别,蜂后的寿命可以长达4到5年,而工蜂的平均寿命只有45天。我们已经知道,蜂后和工蜂唯一的区别就是它们的在成长时所被喂养的食物不同。蜂后被喂养的是可以促进保幼激素分泌的蜂王浆,工蜂则是普通的花蜜和花粉。至于蚂蚁,我们现在已知的是蚂蚁的蚁后通过信息素抑制了工蚁的产卵能力。另外,对于蚁后自身,若是它体内存储的精子如果耗尽的话,本来似乎不会衰老,没有显露出一点衰老迹象的蚁后往往会立刻死亡。蚁后死亡以后,失去抑制的蚁群会自动由普通工蚁当中产生新的蚁后。至于雄蚁和雄蜂,它们存在的唯一目的似乎就是交配,所以它们往往会在交配后立即死亡。从蜜蜂和蚂蚁的例子我们可以看出,主流的许多解释衰老的原因或假说,似乎都无法解释蚁后与工蚁,蜂后和工蜂之间的巨大寿命差异。我们倒是可以从中清楚的观察到,生殖以及相关激素和信息素对它们寿命的巨大影响。
当然,我们这里需要再次强调的是:蜂后和蚁后之所以有这么长的寿命,内在的根本原因,并非是激素,也不是生殖,而是它本就有长寿的能力。激素其实只是一个信使,它的作用只是传递出一个信息,这个信使通知它们打开或者关闭死亡的开关。
关于蜂后身上发生的一些细节,我们可以从2011年4月《Nature》杂志的一篇文章[20] 中找到答案。对于蜂后来说,它是通过摄取了蜂王浆中的一种叫Royalactin 的蛋白质,而这种蛋白质最终通过一系列过程,会提高它体内的保幼激素浓度,由此引发了它的卵巢发育,身体变大等等一系列变化。做一个形象的比喻,这也就是说,在蜂后的体内,保幼激素等等激素作为一个信使,通知了它自己体内的细胞:现在大家不要急着自杀了, 我们荣幸的接到通知,委任我们为本蜂巢的蜂后,负责承担整个蜂群的生殖任务,而这需要我们延长我们这个机体的寿命。于是它们的系统就重新调整机体以及细胞的寿命,使得它整个机体的寿命获得延长。与此同时,蜂后的大颚腺还可以分泌一种信息素“蜂后费洛蒙”(royal pheromone),以此来对外抑制(准确的说是通知)蜂群里面其他工蜂的卵巢不要发育。另外,蜜蜂的幼虫和蛹也可以分泌类似的信息素来实现对工蜂的抑制或者通知。而与蜂后相反的是,白蚁的蚁后体内的机制,却可能是默认将身体调得很长寿的。当然,这需要在没有压力,包括充足的食物、工蚁的良好照顾、安全的环境等等条件下才行,离开蚁巢单独生存的蚂蚁一般只能活几天。在外激素的使用上,蚁后主要也是通过分泌费洛蒙出去,让这些激素到身体外面去抑制工蚁的长寿的能力。蚁后通过分泌费洛蒙,让这个信使进入工蚁的体内,去通知工蚁体内的细胞,让它们抑制自己的生殖能力,或许还要引发它们在适当的时主动自杀。白蚁的费洛蒙对蚁群的作用,实际上还要更复杂一些,它对白蚁的蚁后、雄蚁、兵蚁和工蚁的阶级分化和数量调节也起到了至关重要的作用。
关于激素和信息素(费洛蒙)对生命的影响,我们将会在“压力对寿命的影响”中进行比较详细的讨论。
由此,我们只要通过比较蜂后和蚁后的内激素和外激素的不同作用,就可以看出,在它们的生殖过程中,激素作为一个信使,在生物寿命的控制与反馈中起到的双向作用——它既可以延长寿命,也可以缩短寿命。而且我们也可以看出,生物体内的内在的,与激素和生殖既相关,又独立的,那种可以大范围调节自己寿命的能力。
待续........ 请点击:死亡起源(十一)
备注与参考文献
[20] Kamakura M1.,Royalactin induces queen differentiation in honeybees. Nature. 2011 May 26;473(7348):478-83. doi: 10.1038/nature10093. Epub 2011 Apr 24.
英国《金融时报》科学主编 克莱夫?库克森 报道
美国科学家将生命的多余部分剔除,只留下最基本的要素,由此创造出一种合成微生物,这种合成微生物拥有生长和繁殖所需的最低限度的基因信息。
由基因学先驱克雷格?文特尔(Craig Venter)领导的研究人员创造了名为Syn3.0的“最小化合成细菌细胞”,这是他们在2010年创造的曾得到广泛宣传的Syn1.0的后续成果。Syn1.0是首个拥有用实验室化学品从零合成出的脱氧核糖核酸(DNA)的活细胞。
研究人员希望,Syn3.0或其后续样品能提供一个平台,供合成生物学家加入有特定用途的基因,比如生产药品或生物燃料的基因,尽管Syn3.0更直接的目标是更好地理解生命的基本生化机理。
这个项目的研究成果发表在《科学》(Science)期刊上。文特尔博士表示,该项目持续的时间比预期长了四年,揭示出生物学知识中存在“令人吃惊的”空白。
这个研究团队最初的思路是利用科学文献中提供的所有信息,设计一种最小化的细菌基因组,但这条路没有走通。文特尔博士说,这次失败证明“我们目前的生物学知识,不足以让我们坐下来设计一个活的有机体并将它造出来”。
后来,该团队调整了思路,转而研发基于丝状支原体的Syn3.0。该团队展开了漫长的探索,通过逐个剔除再观察结果的办法,观察丝状支原体的901个基因中有哪些是必不可少的。丝状支原体是一种天然的细菌。
就这样,不必要的基因被一个接一个地剔除,最终得到了473个复制和生长所必需的基因。该团队的研究工作是在美国加州约翰?克雷格?文特尔研究所(J. Craig Venter Institute)及其附属公司合成基因组学(Synthetic Genomics)展开的。
编码组成这473个基因的DNA,相当于53.1万个基因代码化学“字母”。这些DNA随后在实验室中被合成出来,合成出的基因组被植入另一种细菌山羊支原体(M capricolum)的壳中,该支原体自身的DNA已被移除。
该合成基因组接管了宿主细胞的生物学运作,产生了一种强健的细菌,该细菌经实验室培养可迅速繁殖,菌落规模每三小时翻一番
续上,死亡起源(十)
在我们对生殖对衰老和死亡的影响有了一个初步印象后,我们继续观察另外一个因素:压力,然后以压力为中心,讨论生殖、压力、遗传这三者与生物寿命的关系。
3.2.3. 压力与寿命的关系。
首先,这个“压力”指的是生物学意义上的压力(biological Stress)。现在关于生物学压力的研究已经非常丰富了,我们只要在维基百科上查“Stress (biology)”条目就可以获得大量的信息。
其次,我们需要要知道,压力和“表观遗传学”的关系,现代的表观遗传学告诉我们,许多压力所导致的变化是可以遗传的。实际上,许多表观遗传学的研究,就是靠向被研究对象施加各种压力来获得的。举一个比较新的例子,比如2015年10月,美国国家科学院院刊PNAS 刊登了宾夕法尼亚大学的研究者们的发现,父亲经受的压力会改变小鼠精子中的miRNA,进而影响其后代的大脑发育[18]。另外许多关于DNA甲基化的表观遗传实验也是通过向各种动物施加各种压力来获得的。
第三,我们现在要讨论的压力本身的含义可能要很广泛一些。这里所谓的压力,应该包含所有生物体可以感受到的信息,这包括各种感觉:冷、热、触觉、痛觉、味觉、嗅觉、听觉、视觉、饱了、饿了、湿度、光、空气、磁场、周边环境,各种相关生物(捕食者、被捕食者、竞争者等等),以及各种动、植物分泌的信息素等等所传递的信号,总之,由这些信号所造成的综合压力。
生物还有许多压力传播手段是我们人类所不能感知的,比如“信息素”就是其中一种。信息素(pheromone,音译作费洛蒙),也称做外激素,指的是由一个个体分泌到体外,被同物种的其他个体通过嗅觉器官(如副嗅球、犁鼻器)察觉,使后者表现出某种行为,情绪,心理或生理机制改变的物质。它具有通讯功能。几乎所有的动物,也包括许多植物都证明有信息素的存在。它大概可以分为警报信息素、追踪信息素、性信息素、聚集信息素、空间信息素、安慰性信息素等等。许多动物,包括昆虫和一些植物,在遇到危险或者死亡之时都会释放警报信息素。所以,在一片我们看起来祥和宁静的丛林里,那里的空气中其实是充满了只有相关物种自己才能解读的各种压力信号的。
另外,植物也可以和许多动物一样,利用“信息激素”进行通讯来传递报警和压力信号。有些植物,当动物在吃它们的时候,这些植物会分泌警戒费洛蒙使得相邻的植物产生单宁酸,而单宁酸会使得草食动物觉得植物的口感变差,变得不好吃[19]。由此可见,通过信息素,压力也可以在植物的种群中获得广泛的传播。
概括的说,这个“压力”就是生物体对所有它能够涉及和感知的,与周边环境有关的信息的处理,以及各种相关的反馈。总而言之,就是指生物所处的环境对这个生物造成的各种刺激的一个总和。如果压力是这样定义的话,那么,这个“压力”的概念,所涉及的范围之广,应该超出了人类目前的知识范围了。这个概念虽然已经超出了我们的知识范围和能力,不过,我们还是可以讨论一下简化版的压力反应的。
我们通常对于象人类这样的高等生物的压力反应指的是人们在压力面前,在大脑的控制下,交感神经和副交感神经交替作用,于此同时,大脑分泌各种脑激素,以此调控人体内分泌系统的各种激素的分泌,通知各个组织器官和细胞做出适当反应,以此达到对外界环境的某种适应性反应。
我们首先思考一下,在我们的身体中,哪个部位才是对“广义压力”的反应中枢呢?答案很明显,显然应该是我们的神经中枢——大脑。我们的大脑主要通过两套系统来与身体通讯,以此来获得对身体的各种调控。首先,作为我们的神经中枢,它可以通过我们所熟悉的神经系统对压力和各种刺激进行反映;其次,大脑作为我们内分泌系统的主腺,它也通过内分泌系统,在大脑的下丘脑(Hypothalamus)分泌各种脑激素作为信使来调控脑垂体(pituitary)等,并通过脑垂体产生各种激素,再刺激包括肾上腺(adrenal gland)在内的各内分泌腺体产生其他的激素,以激素作为“信使”来与身体各部分通讯,调控身体各部分对身体的内环境和外环境做出各种适当的反应。这个常见的压力信号通道就是所谓的下丘脑——垂体——肾上腺 (HPA) 轴(Hypothalamic-pituitary-adrenal (HPA) axis)信号通道。虽然实际过程其实非常复杂,还会涉及内分泌——神经——免疫系统三大系统的交互作用,但是简单的说,大概就是这么一个过程。
图43. 我们的交感神经与副交感神经在压力下的反应。在压力面前,在大脑的控制下,交感神经和副交感神经交替作用,对身体的不同系统,或激励或抑制。一个有趣的例子是,当一个女孩遇见一个一见钟情的对象的时候,你虽然不能直接感受到她如小鹿般乱撞的心跳,却可以从她的眼眸中看见她迅速扩大的瞳孔。这是因为,此时她体内的交感神经占据了主导,副交感神经受到抑制,与此同时,她体内的肾上腺素的水平也激升,使得她心跳加快,她可能还会感觉到嘴唇发干,那是因为唾液腺被抑制的缘故,同时她的大脑会产生大量的多巴胺,多巴胺会使她进入一种欢愉的状态..........
进一步讨论之前,我们需要先大概了解一下什么是“激素”(荷尔蒙,hormone)。激素是指体内的某一细胞、腺体或者器官所产生的可以影响机体内其他细胞活动的化学物质。仅需很小剂量的激素便可以改变细胞的新陈代谢。简单的说,“激素”是一种可以将信号从一个细胞传递到另一个细胞的化学信使。
其实我们在讨论大肠杆菌、酵母菌以及领鞭虫这些单细胞生物的时候,就已经提到了它们的细胞间通讯了。这些细菌之间也会出现一些合作的,既然要合作,那么它们必然要互相通讯。这些细菌会分泌一些小分子化合物,释放到周边环境中,而另外的细菌身上,则有这些化合物的信号感应器,通过这些信号接收器,可以获得信号,它们以这样的方式,实现细胞间的通讯。而到了高等动物体内,大多数细胞都可以产生一种或多种分子,作为信号分子给其他的细胞传递信号,与此同时,几乎所有的细胞,根据受体数量和种类的不同,都可以有选择的接受到许多不同的相关信号。我们体内所有的细胞,其实都浸泡在一个信息的海洋当中,我们体内的细胞,每时每刻都在进行着大量的通讯。
由此,我们可以知道,我们的细胞,不管是一起协调合作,或者是要集体自杀,都是需要通讯的,而要做到这些,显然离不开这套通讯机制。
所有的多细胞生物都会产生激素,植物产生的激素也被称为植物激素。动物产生的激素通常通过血液运输到体内指定位置,细胞通过其特殊的接受某种激素的“受体” (Receptor)来对激素进行反应。激素分子与受体蛋白结合后,打开了信号通路进行信号转导,并最终使细胞做出特异性反应。
激素进行信号转导包含以下几个方面1.在特定的组织中生物合成特殊的激素;2.存储并分泌激素;3.将激素运输至靶细胞;4.通过细胞膜的膜蛋白质或者胞内受体对激素进行识别;5.激素所传递的信号传递与放大:这一步最终会导致细胞的应答,而靶细胞做出反应后,产生激素的细胞可以识别出这种反应,并最终使得激素产物降解;6.激素的降解
对于哺乳动物来说,激素的作用非常广泛,它可以促进或抑制生物生长;诱发或抑制细胞凋亡;激活或抑制免疫系统;为新的生命阶段(例如青春期、更年期等)做准备;控制繁殖周期;导致情绪波动;调节新陈代谢;为交配、颤抖或逃跑等行为做准备;产生饥饿和渴的感觉;产生性兴奋或性冲动等等。由激素的各种作用可以看出,激素一定也和我们要讨论的衰老与死亡的话题相关。并且因为激素的分泌,许多都是和大脑所受到的压力相关的,由此我们知道,许多激素的分泌也是和压力相关的。
和人类一样,许多生物对“广义压力”的反应也是通过调整各种激素的分泌来实施的。
大概在1930年代,研究者就观察到一个现象:长期压力下的小鼠可以观察到免疫系统萎缩,肾上腺肥大,胃溃疡等症状。后来人们在灵长类和人类身上也观察到了这些现象。进一步的研究表明,这些现象和我们体内的“压力激素”水平变化相关。 时间又过去的许多年,现在我们已经开始知道,压力过大会伤害人体神经系统、骨骼肌系统、呼吸系统、心血管系统、内分泌系统、胃肠道系统、生殖系统等7个系统的健康。而这些现象,很大程度上都和我们的内分泌系统产生的各种激素,特别是“压力激素”相关。
在我们体内,位于肾脏上端,两个拇指大小的肾上腺分泌着三种关键激素:糖皮质激素、脱氢表雄酮(DHEA)及肾上腺素。这三种激素被称为“压力激素”。其中糖皮质激素及肾上腺素是“加压激素”,而DHEA则是“减压激素”。
其实与压力相关的激素非常多,我们仅以最研究得最深入的,也最典型的糖皮质激素来讨论。而且,在前面的讨论我们已经知道了,杀死Sockeye三文鱼和阔脚袋齁的主要杀手,也正是糖皮质激素。
糖皮质激素(gc)是由肾上腺皮质束状带细胞分泌的一类甾体激素,具有广泛的抗炎、免疫抑制和抗肿瘤活性,包括诱导T细胞和B细胞凋亡的能力。低水平糖皮质激素是维持胸腺功能的必备物质,刺激各种成熟淋巴细胞活性,加速未成熟前淋巴细胞发育为效应淋巴细胞,增强胸腺分泌胸腺激素。但是,值得注意的是糖皮质激素诱导胸腺细胞死亡模型是研究凋亡经典模型,对胸腺细胞凋亡的分子机制的认识多来源于此。由糖皮质激素诱导的细胞凋亡程序既有细胞特异性,也有共同特征,它可以快速令小鼠胸腺显著萎缩,并且使胸腺细胞减少80%以上。研究还发现生理糖皮质激素水平引起大规模胸腺细胞凋亡可以通过肾上腺切除逆转。随着程序化细胞死亡机制研究的深入,糖皮质激素这种作用机制越来越明确,因为它可以诱导DNA降解成180 bp及其倍数的dna片断,这种DNA降解规律是凋亡的典型特征。[62]
关于压力对我们身体的激素分泌和免疫系统的影响,一直有一个在演化上难以解释的现象:我们在受到短期压力的情况下,我们的大脑会控制和调节内分泌系统,导致体内的糖皮质激素水平迅速升高。短期的糖皮质激素水平升高是可以激活并加强我们的免疫系统的,这个很好解释。但是如果长期的处于压力之中,体内增加的糖皮质激素则会开始抑制,甚至摧毁我们的免疫系统。糖皮质激素甚至可以直接杀死我们体内的淋巴细胞(一种免疫细胞)。糖皮质激素可以诱导并引起大规模胸腺细胞凋亡。而且,糖皮质激素对我们的杀伤并不止这些,长期的高浓度的糖皮质激素它还会杀伤我们的脑神经细胞,损害大脑的海马体等等。所以,压力会影响内分泌系统,并且长期的压力下,我们的内分泌系统甚至会抑制并摧毁我们的免疫系统。在极端情况下,体内高浓度的糖皮质激素甚至可以直接杀死Sockyey三文鱼。
这是一件很奇怪的事情,为什么我们会演化出这么一套奇怪的机制,这是用一般的理论无法解释的。我们很难理解,为什么好端端的要将我们的免疫系统摧毁掉?对于个体的生存来说,这显然不是一个好的选择。不过,如果把这个问题放到本文一直在讨论的话题——衰老与死亡的产生来看,我们就有一个合乎逻辑的解释了。
一个合理的演化论的解释就是:生物在演化过程中,需要具备对压力的反馈能力,并通过不断调整,维持一种动态平衡。而且这种能力还必须是可以遗传的,因此遗传是实现压力反馈的一个重要环节。如果它们不具备对压力的适当的遗传反馈能力,这个物种很容易被自然选择所淘汰。而表观遗传在这种适应反馈中起到了非常重要的作用。长期的压力对于所处其中的生命来说,往往意味着一种长期的,经常剧烈变化的,需要不断适应的竞争环境。在长期的压力面前,如果不能适应,物种面临的是可能威胁整个物种延续的生存危机。所以,它们需要一方面可能通过后天修改自己的某些甲基化水平等等,修改自己的各种表观遗传来获得某种适应,同时在必要的情况下,还需要加快自己的演化速度来适应这种变化。为此它们可能需要加快自己的生命周期,加快自己的生长发育和新陈代谢,加快自己的衰老和死亡速度,通过不断的快速调节表观遗传的各种开关,不断的更新换代来适应各种变化。虽然这种加速是需要消耗能量并要付出相当代价的,不过,在自然选择这只看不见的手的微妙调节下,它还是可以找到一个符合自己利益最大化的,适合当前竞争环境的平衡点。因此,在长期的压力之下,我们的身体主动摧毁自己的包括免疫系统在内的各个系统来加快自己的衰老和死亡速度,就有了合乎逻辑的演化论上的解释了。
而反之,当一个物种处在一个相对优势的,“广义压力”较低的环境时,它可能就会选择延长寿命(包括延长生殖寿命)的策略。我们从许多大型乔木和其他生物的策略上可以知道,延长寿命在竞争中也是可以获得许多好处的。而且,延长寿命对能量的消耗也相对小许多。所以我们可以看到许多哺乳动物也可能拥有很长的寿命,比如我们人类、大象、以及寿命可能长达200年的弓头鲸(Bowhead whale),另外,通过考古发现,一些大型恐龙的寿命也很长,这可以通过分析它们的骨骼的年轮得知。这些在生态链处于一个优势地位,而且食物相对简单,不需要通过剧烈的捕猎来获得食物的动物,往往可以观察到它们会倾向于选择长寿的策略。相应的,它们的新陈代谢速度或许也会因此比小动物减缓一些。而同样处于生物链顶端的狮子是通过剧烈的捕猎来生存的,剧烈的捕猎则意味着竞争和压力,狮子甚至可能在捕猎中受重伤,所以狮子的寿命并不长,大约只有10到14年。与狮子相反的是,大象的食物是植物,弓头鲸的食物是磷虾和浮游生物,它们都没有捕猎的压力,而它们巨大的体型也保证了成年后的它们自身被天敌捕猎的压力也相对较轻。另外对于狮子来说,如果生活在动物园里面,没有压力的话,有记载其寿命可能长达34年。
对于压力来说,人类的情况要复杂许多。不过纵观人类历史,我们的总体寿命是一直在延长的,衰老速度也在变慢,相信这不仅仅是因为科技的发达以及食物的丰富,也和现代普通人的总体生存压力相对古代的普通人要低许多所致。另外,人类和大部分动物相比,已经脱离了狂野森林中,弱肉强食的从里法则了,所以人类所面临的压力,是远比绝大多数动物小的。大部分动物,不论是捕猎在还是被捕猎者,长期面临的,往往都是生死攸关的竞争和压力。再加上人类拥有动物界中最发达的大脑,人类也因此具有了哺乳动物中,非常长的,包括生殖寿命和老年寿命在内的长寿命(注: 关于哺乳动物的寿命与大脑的关系我们会在后文讨论)。当然,我们也需要意识到,演化的基本单位是个体,每一个生物个体实际都在走自己独立的演化之路。如果我们面临长期的压力的话,我们上面的讨论以及各种对内分泌系统的研究告诉我们,我们的机体或许就会悄悄提前启动那套自杀机制,导致我们的早衰甚至死亡。
与蜜蜂和白蚁的生殖与激素可以双向调节寿命的长短类似,压力对寿命的影响也是双向的。因为寿命本身就是一个可以按需要而进行双向调整的变量。生物在生命当中可能面临的诸多压力当中,饥饿也是一种很常见的压力。 不过与上述压力的作用相反的是,饥饿所造成压力却可以延长寿命。大概该上世纪30年代开始,研究者就发现,适当的饥饿可以延长生物的寿命。康奈尔大学在1934年的一个著名实验中,发现在实验室中,只要给老鼠喂低卡路里的食物,但又同时保证他们可以获得足够的营养以避免营养不良,那么,这些老鼠的寿命就可以达到预期寿命的两倍。
在过去的80多年间,许多研究机构做了大量的动物节食实验。他们发现剥夺营养可以延长包括酵母菌、蠕虫、果蝇、蜘蛛、鱼、大鼠、小鼠直到灵长类的猴子的寿命,它们的寿命可能比它们自由进食的参照组高30%到200% [21] 。
2014年6月,美国杜克大学(Duke University)的研究者们发现:如果拿走线虫(C.elegans)的食物,就会触发线虫进入一个发育停滞的状态:它们还会继续蠕动,继续寻找食物,不过它们的细胞和器官却会进入一个不会衰老(ageless)的悬停静止态。当重新恢复供应足够的食物之后,它还能继续正常发育,不过却可以因此获益,获得最高长达延长至两倍的寿命。这个研究成果于2014年6 月19日被发表在遗传学杂志《PLOS Genetics》上 [22] [21] 。
图49. 图示的是细胞被荧光染色后的秀丽隐杆线虫(C. elegans)。绿色的是肌肉细胞,红色的是生殖细胞。它们在饥饿的条件,这些细胞的发育会在一个发育节点(checkpoint)前暂停,并延缓它们的衰老。
我对于该实验中展现出的线虫可以自由调节寿命其实并不感到很特别,因为经过这么久的讨论,我们应该知道,这本是天经地义的事情,对于生物来说,寿命本就是可调的一个变量。我感兴趣的是,上述实验在无意中展示的,生殖的延迟对寿命的影响。研究员Sherwood和他同事们一开始把研究的目光集中在了线虫的幼虫发育的最后两个阶段——L3 和 L4,在这两个阶段,线虫的一些关键的组织和器官还在生长发育当中。在这两个阶段当中,线虫的生殖孔(Vulva,也就是它的生殖器)会从一个只有3个细胞的小不点成长到一个有22个细胞的小球。他们发现,当他们在线虫发育的这两个阶段中如果取走食物,线虫的生殖孔的发育就会停止在要么3个细胞的状态或者要么22个细胞的状态,(而不会是中间的,比如10个细胞的态)。随着进一步的研究,他们在线虫全身所有的组织和器官中都观察到了同样的现象。这篇文章的意义在于,发现了线虫生命的发育节点或者“检查点”(checkpoints)。它告诉我们,生命的发育不是连续的,而是有许多节点的。线虫的发育过程中有许多的“检查点”,它的机体会评估每一个检查点,看看条件是否合适,如果合适,就继续发育,如果出现如上述的食物短缺,营养不足的情况,它们的发育就会在这个检查点前面停止下来,等待条件合适再继续。而且我们也可以从这个实验看出,杜克大学的研究者所观察到的线虫的寿命延长,是已知的绝大多数的衰老和死亡机制所不能解释的。
不过,正如本文2.4中所提到的,在杜克大学这份报告发表一年后,美国西北大学的研究团队则在2015 年7月发现了线虫(C.elegans)的衰老死亡开关了[11],并找到了相关的基因,他们发现线虫的死亡不是所谓的自然衰老所致,它们的死亡是受生殖干细胞触发的开关控制的。 而且线虫的死亡开关的打开的“检查点”(checkpoint) 是在生殖系统成熟8个小时之后启动。所以,饥饿本身并不是造成线虫寿命延长的根本原因,它之所以寿命获得延长的一个可能的原因,是因为它们的发育还没有走到由生殖系统成熟所触发的死亡开关的那个“检查点”,正常情况下,没有走到那个被生殖细胞触发的死亡开关的节点之前,如果它还没有被饿死的话,或者没有被它的死亡机制的另一个触发点触发的话,线虫有相当大的可能是不会主动触发死亡开关的。也就是说,线虫的饥饿所引发的寿命的延长,只是为了可以让它可以积攒足够的能量,让它的发育可以走到生殖那个点,以完成繁殖的使命。由此我们也可以看到线虫的寿命与生殖的关系。虽然线虫的寿命与生殖相关,但是,线虫的死亡机制是与生殖独立的。而这里面更加深刻的内在原因依旧是,寿命本就是可调的,所以它才能自如调整,如果寿命是固定且不可调的话,它是不可能获得这样达到两倍的大范围的调整的。(注:线虫在切除生殖系统后,也是会死亡的,并不会因此永生。另外,有glp-1(e2141)突变的线虫没有生殖细胞系,它们虽然可以获得寿命的延长,但是也是会死亡的。这说明线虫的死亡机制虽然可以由生殖系统触发,却是一个与生殖完全独立的机制)
上述现象在演化论上的解释也很简单。生命存在的意义是什么?当然是为了活着,为了发育,为了繁殖。如果因为食物短缺,而使得自己不能获得足够的能量去发育和繁殖,也使得后代不能获得足够的能量去发育与繁殖,那怎么办?马上因为压力而自杀吗? 显然不是。生命反而要迎着这个压力去延长自己的寿命,尽量等到食物重新丰富、累积的能量足以繁殖的那一天。这也是本文一开始举例的北极灯蛾的生存策略,这是一种很正常的演化结果。
比线虫更复杂的,是哺乳动物在饥饿压力下的反应............
待续.............请点击:死亡起源(十二)
备注与参考文献
[11] Simple Flip of Genetic Switch Determines Longevity in Animals. http://www.northwestern.edu/newscenter/stories/2015/07/genetic-switch-determines-longevity-in-animals.html
[18] Ali B. Rodgers, Christopher P. Morgan, N. Adrian Leu, and Tracy L. Bale ,Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress,PNAS doi: 10.1073/pnas.1508347112 November 3, 2015
[19] J.du P. Bothma, Game ranch management, fourth edition, Van Schaik publishers, 2002
[21] Strict diet suspends development, doubles lifespan of worms, http://www.eurekalert.org/pub_releases/2014-06/du-sds061314.php
[22] Adam J. Schindler, L. Ryan Baugh,David R. Sherwood,Identification of Late Larval Stage Developmental Checkpoints in Caenorhabditis elegans Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways,PLOS GENETICS, Published: June 19, 2014?DOI: 10.1371/journal.pgen.1004426
[62] 钱知勉(综述),殷彦君,激素对胸腺影响的研究进展,滨州医学院学报2009年2月第32卷第1期
我个人理解表观遗传和“用进废退”还不能划等号。
我个人理解,表观遗传更倾向于重新整理已有的基因和功能,只是使用开关,让它们表达或者不表达。我更倾向于,生物是通过许多基本模块搭建的,它的复杂性是许多相对简单基本模块搭建的结果。这个在技术上容易成熟,也更稳定。
而用进废退,则感觉上似乎更偏向于创新。这个在技术上难度太高,也不稳定。
这个话题我无法回答。呵呵。 不过,直觉告诉我们,生物体内有大量的这样的固化的模块,比如,许多鸟类生来就有语言,即便是由人养大的火鸡,也是一样,这些语言无需学习,天生就会。
感觉上,生物对知识的固化,来自两个方面,一个是ROM方式的,一个是RAM方式的。一个是先天的,一个是可以后天学习的。
究竟是生命存在的意义是为了永生
还是迄今为止 生命一直在追寻永生
这里的却别在于如果是后者 生命能够达到永生(或者足够长,长到不想活了) 那么是不是会追寻点别的 比如活的更好更精彩
西河好久没有这样的东西了
不得不献宝,即使通宝数已经快到0了
另外,像人这样的生殖期很长的动物,演化在对待寿命与生殖任务完成与否是怎样的一种关系。
比如听到过一种说法,人老年的各种疾病包括癌症,都是因为人的生殖任务完成之后,机体(这里有你提到的死亡基因开关的作用)触发的,因此早早晚晚都要是一身的病。但人的生殖功能可以一直延续到五六十岁,有的男人甚至更久,还是说在大型哺乳动物身上,这个死亡与生殖的关系不那么密切了。
物理反应,能量转换,问生命意义的时候就免不了要问宇宙存在的意义,这个就目前无解了。
细菌,昆虫,屎壳郎这种生命存在的意义可以从实用视角得到解释,甚至大型哺乳动物也可以从食物链的存在得到解释,估计人要问这个问题终归还是因为人的大脑。
生命的基因观认为生命的意义在于基因的传播或者基因的永生,而基因因为只是信息,于是生命又不过是信息传播的一种方式。
不过人可能真正想问的不是生命存在的意义,而是产生大脑这种智能的意义。毕竟生命司空见惯,地球上随处可见。但是人类大脑智能这个现象,为什么产生,存在的意义是什么,想想的确让人毛骨悚然,难怪人类自古产生那么多宗教,可怜的古人逻辑无法自洽啊,现代人也很难。
一开始打算直接编制基因,后来发现不行,就用支原体的DNA,敲除不必要的部分,创造了只有几百个基因的强壮支原体。
看来我的脑子和以前一样,马马虎虎还能跟上最前端的东西,哈哈。