- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:【原创】聊聊我所知道的概率论教科书和参考书(一) -- 厚积薄发
【序】
这篇文章是对随机微分算子网友一些问题的问答,也是我半年前许下的一笔文债。它带动了我很多的回忆,可能会拖很久才能写完,大家见谅。
故事该如何开始呢?想起了《东京爱情故事》的主题曲:
“不知该从何说起
时间在悄无声息地流逝
涌上心头的满腹言语
消失得无影无踪”
既然这个故事是关于我自己的彷徨与挣扎的,那么就从一百年前另一个青年的彷徨开始吧:
这时,我有一个朋友做了法科学生,他怂恿我进他的学校。我又读了这法律学校的动人广告,里面保证了许多了不得的事情。它答应在三年之内教完一切关于法律的学科,保证学成可以立即做官。我的朋友不断地对我称赞这个学校,直到我最后写信回家,详述广告上的保证并请家人寄学费给我。我将自己的前途画成一幅光明的灿烂的图画给家人看,将自己画成一个法律学家和大官。于是我付去一元向法律学校报名,同时等待父母的回音。
但其中忽然又有了变动。这回是一个商业学校的广告。另一个朋友劝我,以为国家正在作经济战争,目前最迫切需要的,就是能够建立国家经济的经济学家。他的理论得胜了,我再花一元到商业中学报名。我真的去注册而且录取了。不过,这时我还继续留心广告,有一天看到广告,描写一个高等商业公立学校的优美。它是政府开办的,课程繁多,听说里面教员都是极能干的人。我断定还是到那里学成商业专家比较好,出了一块钱去报名,随后将我的意思写信告诉父亲。他很高兴。父亲很知道有了商业智慧的好处。我进了这个学校而且留在那里——有一个月。
--《毛泽东自传》,第二章:在动乱中成长起来(1937年黎明书局初版影印)
【第一幕】路线图
根据各人的基础和目的不同,对概率论的学习可以沿着不同的路径,我现在想到的有两条。
第一条:对于本科是数学系和统计系的同学,我对研究生博士阶段的概率论学习推荐如下路线图:
Richard Durrett 《Probability: Theory and Examples》 (2nd Edition)
--> A. N. Shiryaev 《Probability》 (2nd Edition), 严加安 《测度论讲义》(第二版), Daniel Revuz & Marc Yor 《Continuous Martingales and Browian Motion》 (3rd Edition)
--> Bernt Oksendal 《Stochastic Differential Equations》 (6th Edition), Richard Durrett 《Stchastic Calculus: A Practical Introduction》
--> Olav Kallenberg 《Foundations of Modern Probability》 (2nd Edition)
--> A. N. Shiryaev 《Essentials of Stochastic Finance》, William Feller 《An Introduction to Probability Theory and Its Applications》。
这条路径看重的是理论概率论基本功的训练,并以数学金融为最终目的。对应用概率论的涉及不足。
第二条:对于非数学系和非统计系出身的理工科学生,我对本科-硕士-博士阶段的概率论学习推荐如下路线图:
Sheldon Ross, 《Simulation》 (3rd Edition)
--> Gregory Lawler, 《Introduction to Stochastic Processes》 (2nd Edition)
--> Y. S. Chow,H. Robbins, D. Siegmund 《Great Expectation: The Theory of Optimal Stopping》, E. B. Dynkin & A. A. Yushkevich 《Markov Processes: Theorems and Problems》
--> William Feller 《An Introduction to Probability Theory and Its Applications》, Steven Shreve 《Stochastic Calculus for Finance》。
这条路径偏重应用概率论,并涉及数学金融。
在回答数值分析网友关于统计专业需要什么样的数学基本功的帖子里(指点不敢,只是谈一些个人看法),我提了另外一条从无到有的速成路径。
关于如何选取学术上的导师,我以前的一个帖子可供参考:【原创】和木道人:写给学弟学妹们。
本帖一共被 3 帖 引用 (帖内工具实现)
我不是学统计的,只是大二的时候把概率统计的教材(本校自己编的)后面的习题做了两遍。时隔四年,看见您这样的文章,真的不胜感激
鲜花已经成功送出,可通过工具取消
提示:此次送花为此次送花为【有效送花赞扬,涨乐善、声望】。
下面是路线图中所提部分书籍的下载地址。gigapedia需要注册才能下载。我以前一个帖子里介绍过如何使用这些下载网站:【原创】金融定量分析的习题解答开源运动。去英文亚马逊网站上可以查到每本书的国际书号。
再次对提供各种线索的网友们表示感谢--你们是我坚持的动力。
1. Herman Bierens. 《Introduction to the Mathematical and Statistical Foundations of Econometrics》。ISBN: 0521542243。http://gigapedia.com/items/13904
2. Richard Durrett 《Probability: Theory and Examples》 (2nd Edition),ISBN: 0534243185。 http://gigapedia.com/items/17223
3. A. N. Shiryaev 《Probability》 (2nd Edition),ISBN: 0387945490。 http://gigapedia.com/items/102409 国内也有翻译:http://www.china-pub.com/301212
4. 严加安 《测度论讲义》(第二版)。暂缺,记得在中文网上见过电子书下载。建议大家买正版支持严先生。
5. Daniel Revuz & Marc Yor 《Continuous Martingales and Browian Motion》 (3rd Edition),ISBN: 3642084001。暂缺,记得网上有电子版本。国内有世界图书出版社的英文原版,大概几十人民币。http://www.china-pub.com/301782
6. Bernt Oksendal 《Stochastic Differential Equations》 (6th Edition)。ISBN:3540047581。http://gigapedia.com/items/39075
7. Richard Durrett 《Stchastic Calculus: A Practical Introduction》 。ISBN: 0849380715。 http://gigapedia.com/items/76876
8. Olav Kallenberg 《Foundations of Modern Probability》 (2nd Edition) 。ISBN: 1441929495。暂缺,记得网上有第一版的电子书。国内有原版出售,价格一百左右:http://www.china-pub.com/28963
9. A. N. Shiryaev 《Essentials of Stochastic Finance》。ISBN: 9810236050。 http://gigapedia.com/items/257099。 国内也有翻译:http://www.china-pub.com/301497。
10. William Feller 《An Introduction to Probability Theory and Its Applications》(I & II)。 ISBN:0471257087 http://gigapedia.com/items/23436
ISBN:0471257095 http://gigapedia.com/items/23435
这套书强烈建议读人民邮电出版社的中文版,理由容后解释。http://www.china-pub.com/30037
11. Sheldon Ross, 《Simulation》 (3rd Edition)。ISBN:0125980639。 http://gigapedia.com/items/76872
12. Gregory Lawler, 《Introduction to Stochastic Processes》 (2nd Edition)。ISBN: 0412995115。 http://gigapedia.com/items/83142/
13. Y. S. Chow,H. Robbins, D. Siegmund 《Great Expectation: The Theory of Optimal Stopping》。ISBN:0395053145。这本书的英文版已经绝版。但是中译本在 verycd 上有下载。中译本:《最优停止理论》何声武,汪振鹏译(上海科学技术出版社,1983年)。
14. E. B. Dynkin & A. A. Yushkevich 《Markov Processes: Theorems and Problems》。ISBN:B0006BYRAW。http://gigapedia.com/items/318848
15. Steven Shreve 《Stochastic Calculus for Finance》。
ISBN:0387249680。http://gigapedia.com/items/10790
ISBN:0387401016。http://gigapedia.com/items/32070
印象中厚兄一直致力于拓展网络的学习功能。尽管石榴知道自己是数学白痴,大概一辈子也不会去动厚兄提供的那些资源,但您的行为确实让我钦佩不已。
对比软件破解、字幕组之类行动派的论坛,石榴感觉西西河总的来说风格还是偏向清谈一些。所以参与到厚兄的工作中的河友可能数量是有限的。但相信所有人都会对您的想法由衷的表示钦佩的。
学习东西最难的时候就是入门阶段,往往是对着卷帙浩淼的书堆望洋兴叹,不得其门而入。
这时,能有过来的前辈指点途径,真有拨云见日的感觉。
真的谢谢厚积薄发老师!
我用过《概率论与数理统计》(浙大第三版),考研足够了
Daniel Revuz & Marc Yor 《Continuous Martingales and Browian Motion》 (3rd Edition)
--> Bernt Oksendal 《Stochastic Differential Equations》 (6th Edition), Richard Durrett 《Stchastic Calculus: A Practical Introduction》
是不是顺序有点错位?个人以为Oksendal的书要浅得多,适合入门。
而Revuz,Yor的书更专业。
没有搞错。理由两条:
1.对象问题:“对于本科是数学系和统计系的同学,我对研究生博士阶段的概率论学习推荐如下路线图”。
2.实践问题:随机微分算子网友有云:“Oksendal 的 《Stochastic Differential Equations》我们讨论班讨论过,不过有些地方我觉得讲得不太清楚,尤其是对brownian motion这一块,多有不清楚的地方,所以想看看专门讲brownian motion的书。”
不止一个人对我抱怨过这一点,包括我的同事(非概率论专业)。我甚至能够猜出他们都会在什么地方犯迷糊。所以我先提 Revuz & Yor就是针对这部分追求严格性和清晰性的人。这本书确实难的多也专业的多,不过俺有走捷径的速效大力丸:用Durrett 的书做基础,用严加安的书保驾护航,轻松读完最有用的前四章不是问题。我自己就是这么过来的。所以我说我自己是“先造原子弹,然后用原子弹为改革开放保驾护航”。
你如果细心看我为非数学专业列的书单顺序,就可以看出来我是反其道而行之,“先搞轻工业,后搞重工业”,把布朗运动随机微分方程藏到了Lawler的书里面,走亚洲四小龙的路线。
这其实是个雄心问题:是凑凑合合,能用就行,还是真的把问题搞清楚?
我见过不止一次有人因为概念不清楚导致计算错误的。有同事,有朋友,都是博士毕业。
不过,学习是循序渐进的.
Oksendal的书确实不严格,但好处是容易上手,大概看看怎么回事,然后要深入研究的时候再找别的书即可.这本书对随机分析的基本思想还是讲的不错的。
反之,Revuz,Yor的书容易打击初学者(即使是科班出身)的积极性。 (不过如果仅限于前四章那马马虎虎还可以接受。)当然,工夫深了之后自然能体会到它的好处。
这是个人体会,不过学习要看个人的,有的人入门时直接看BOURBAKI也乐在其中,这些人学概率论不如直接看Claude Dellacherie, Paul-André Meyer的"Probabilities and potential",比看其他的书都有用。
不过对大部分“正常”的学生,或许由浅入深是个不坏的选择?
学习的顺序因人而异。我只是把我的个人经历列出来,让大家看看我的思路,知道做学问并非只有一种方法,一种路径,一种顺序。我这个帖子里会专门讲我自己对此的思考,到时还请指正。
貌似说的就是我了。看来俺是传说中只在凯迪出现的非正常人类了。
我有个师兄也有这种能力。俺自愧弗如。
的书有些问题。我只精读了前两卷,发现有不少错漏之处,差点给俺造成心理伤害了。后来读了何声武、汪嘉冈、严加安的《Semimartingale Theory and Stochastic Calculus》,才算是抹平了伤痕。以后见人就推荐这本书,做足了五毛党的功课。
我从兄台的帖子里能感觉到你的水平和成熟度在我之上,你就不用“佩服”了。再这样下去,围观的群众要呕吐了。
不过布尔巴基的书确实对思维是个很好的训练。我只读过一小部分《Topology》,但是印象非常深刻。
【注】文中所引曾文正公家书为曾国藩咸丰七年十二月十四日致弟弟曾国荃信中一段话:“凡人作一事,便须全副精神注在此一事。首尾不懈,不可见异思迁,做这样想那样,坐这山望那山。人而无恒,终身一无所成。我生平坐犯无恒的弊病,实在受害不小。当翰林时,应留心诗字,则好涉猎他书,以纷其志。读性理书时,则杂以诗文各集,以歧其趋。在六部时,又不甚实力讲求公事。在外带兵,又不能竭力专治军事,或读书写字以乱其志意。坐是垂老而百无一成。”
【注】文中所引《杂钞》是曾国藩《经史百家杂钞》。毛泽东将《经史百家杂钞》与姚鼐的《古文辞类纂》做过比较:“国学者,统道与文也。姚氏《类纂》畸于文,曾书则二者兼之,所以可贵也。”在此基础上,毛泽东把曾国藩的读书方法称之为“中心统辖法”或“演绎法”。
虽然,台积而高,学积而博,可以为至矣,而未也。有台而不坚,有学而不精,无以异乎无台与学也。学如何精,视乎积之道而已矣。积之之道,在有条理。吾国古学之弊,在于混杂而无章,分类则以经、史、子、集,政教合一,玄著不分,此所以累数千年而无进也。若夫西洋则不然,其于一学,有所谓纯正者焉,有所谓应用者焉,又有所谓说明者焉,有所谓规范者焉,界万有之学而立为科。于一科之中,复剖分为界、为门、为纲、为属、为种,秩乎若瀑布之悬岩而振也。
博与精,非旦暮所能成就,必也有恒乎?曰,日行不怕千万里。将适千里,及门而复,虽矻矻决不可及,恒不恒之分也。
以上引文大多收录于《湖湘文库--毛泽东早期文稿》一书。对毛泽东说这些话的时代背景以及相关八卦有兴趣的网友可参见陈郢客:【原创】黄鹤知何去,剩有游人处。
【评一】前文所列书单,我后文自会细细解释各自得失,尤其是用何种“中心”来统辖。我也会提及更多和这些书籍相关的参考书目,以便青年人量体裁衣,自行选择合适的书籍。
【评二】我在校念书期间,为学到有用的知识,曾翻阅过不少学术书籍,精读、泛读都有,对择书的重要性颇有体会。我所推荐的书目,每一本背后往往有若干书籍作为比较。其中甘苦,唯自知耳。多年以后读毛泽东早期文稿中治学心得,才有相见恨晚之感。现择其一二转录于此,以飨后人。
【评三】我早年间对毛泽东“舍治科学”一事颇为不解,理科生的腹诽是少不了的。近年来读其1917年致恩师黎锦熙信《贯通大本源》一文,始有所悟。事关社会政治,不便在纯技术贴里多谈。只想说,百年前那个青年的彷徨在今天仍然被许多人重复着。如我们无所作为,我们的后代也必然重复同样的悲剧。
谨以何新用毛泽东生前所书韦庄罗隐成句所作的悼诗一首为结尾,是为第一幕终章:
雕阴无树雨难留 ①雕阴,陕西绥州古地名。此借喻陕甘宁。
雉堞连云古帝州
芳草有情皆碍马
好云无处不遮楼
时来天地皆同力
运去英雄不自由
唯余岩下无情水
犹解年年傍驿流。
【第一幕终】
本帖一共被 1 帖 引用 (帖内工具实现)
MEYER那本书我只读了第一卷一小部分,实在太费神。和你差得太远。
不过你说的错漏之处,不知你看的是英文版还是法文版?(我看的是法文原版)我猜多半是打印校对的错误,那个出版社据说也有些小问题,据说后来还和作者弄得不太愉快。
我的水平和成熟度就更不用提了。之所以回帖说到“循序渐进”,完全是个人的体会。本人天资有限,稍难的东西就理解不了,只能先看自己能理解的东西,再看难一些的,还得反反复复的看,来来回回的想,如华老说的“从薄到厚,从厚到薄”,日积月累工夫花了一大把,才慢慢有些明白。比如REVUZ,YOR那本,刚开始就被吓到过,过了一段时间才慢慢适应,所以才有上面的回帖。
另外,我提BOURBAKI,完全是因为MEYER写那个四卷本就是学着BOURBAKI的样子(记得他前言里说的)。俺自己可是没怎么啃过。:)
数学这个东西,天赋第一,毅力第二。我自己两者都缺,惭愧的很。