主题:【讨论】在全黑的屋子里,你清醒着,你的眼睛会怎么动? -- jent
当然,这里的全黑,指的是没有任何可见光。毕竟,还是会有不同的热源发出人眼不可识别的红外光的。
更进一步,在这个全黑的屋子里边,突然有一个光子,对的,就是一个光子,一个在可见光谱中的的光子,进入你的眼睛,到达你的视网膜,你会认识它吗?你的眼睛会干什么?
河里的大大们,有没有哪位对这个问题感兴趣,或者有心得体会的?
----------------------------------
人眼/脑系统对单光子有反应。
这是一个不可思议的物理/生理/心理过程。
偶也很有兴趣。因为最近偶和同事可以完美地以 1666Hz 的时间采样频率和纳米级别的空间位移精度来记录人眼的移动(Saccade / Vergence),而且这个测量记录是完全无接触的(自己得意一下,^_^)。
所以昨天和朋友吃饭的时候,有人提起来这个问题。嗯,一个晚上过去了,在这里问一下,有没有谁做过/想过/感兴趣过这个事情。
本帖一共被 1 帖 引用 (帖内工具实现)
主要是搞量子通信,量子计算的那帮人中的一小撮。
人眼/脑系统对单光子有反应。
这是一个不可思议的物理/生理/心理过程。
偶也很有兴趣。因为最近偶和同事可以完美地以 1666Hz 频率和纳米级别的精度来记录人眼的移动(Saccade / Vergence),而且这个测量记录是完全无接触的(自己得意一下,^_^)。
所以昨天和朋友吃饭的时候,有人提起来这个问题。嗯,一个晚上过去了,在这里问一下,有没有谁做过/想过/感兴趣过这个事情。
那么是否会忽略一部分射入眼睛的光子呢?我感觉一瞬间,指的是人眼可以分辨的最小时间间隔,射入人眼的光子应该是海量的,而人眼的分辨能力又是有限的,所以有些光子很可能被忽略了。
另外,您说的频率是光的频率还是就是每秒得到眼睛图像的次数(赫兹),这个图像是眼球还是眼底视网膜,以上完全是外行的乱问,求解惑。
我说的频率是每秒得到眼睛图像的次数,现在的实验条件是最高可以每秒1666帧图像(据负责硬件系统的同事讲,可以达到2800多帧/秒)。
是采集的眼底约长宽各800微米左右的视网膜图像(不是完整的眼底)。
这样还能检测单光子事件?
不过看了一些文献后觉得很有意思。
其中的一个group就是冲着人眼在单光子条件下如何去噪声以改进单光子检测器件灵敏度而去的。
一个细胞能摊上几个像素?能监测到细胞的变化吗?以上说的细胞也是我的臆想,请您理解。如果检测到了变化,那么接收了光子之后是否会有一个休眠期,对应图像在视网膜上的滞留现象,如果有,多长时间能恢复?对于不同波长的光,接受的细胞是否不同,是否会有同一波长的光为不同种类的细胞所接受?以上是根据我可怜的关于眼睛的知识乱问的,包括三原色是产生于三种不同的接收细胞。如以上提问过于愚蠢,您不予理睬好了。对于我,能与第一线的研究者谈他自己de课题是个幸运。
主贴有两个内容。
一是关于俺们正在作的一项技术。可以在红外照明条件下作800微米范围的眼底成像。像素不多,128见方。目前成像速度目前为 1666Hz。在此成像基础上作眼底运动的检测,前后两帧间可以记录到几个纳米精度的运动。在5秒内(约8000帧上下)的累积误差范围为 <20微米。
俺们原本的目的是为了做高精度眼底运动补偿的。
第二项内容是这几天刚接触到的,也就是眼底/人脑对单光子的反应。从朋友处以及网上查询得知,人眼在黑暗条件下对单光子有反应的。
于是就在想,俺们目前的东东,是否可以作为一项检测单光子眼底反应的技术支持。俺猜测,如果在无可见光条件下,突然眼底接受到一个单光子,那么,眼睛运动应该有一个突然的变化 ---- 虽然俺还没有做相关的实验来验证这个推测。
你的那些问题,其实也正是这两天俺们在讨论的话题。嘻嘻嘻嘻。
因为人眼有光强相应阈值,单光子的光强不够,不会相应的。否则人眼就得累死。
但可能大脑有减噪回路,未必会意识到。可能不需要绝对黑暗的房间,用足够暗的房间里,左右眼对照控制就可以分析出不同出来了。
请问能否推荐一些文献或者group在这方面有研究的。
多谢。
给咱们普及普及。另外,眼底接受细胞碰到一个光子会产生机械(这个词似乎不准确)运动吗?如果能而且被你们观察到,那就太棒了,不过我总觉得是化学反应,要有机械运动也不会这么大尺度,好像差一到两个数量级,似乎红外光的分辨率有限,不知是否到了极限。
Can a Human See a Single Photon?
Some people have said that single photons can be seen and quote the fact that faint flashes from radioactive materials (for example) can be seen. This is an incorrect argument. Such flashes produce a large number of photons. It is also not possible to determine sensitivity from the ability of amateur astronomers to see faint stars with the naked eye. They are limited by background light before the true limits are reached. To test visual sensitivity a more careful experiment must be performed.
The retina at the back of the human eye has two types of receptors, known as cones and rods. The cones are responsible for colour vision, but are much less sensitive to low light than the rods. In bright light the cones are active and the iris is stopped down. This is called photopic vision. When we enter a dark room, the eyes first adapt by opening up the iris to allow more light in. Over a period of about 30 minutes, there are other chemical adaptations that make the rods become sensitive to light at about a 10,000th of the level needed for the cones to work. After this time we see much better in the dark, but we have very little colour vision. This is known as scotopic vision.
The active substance in the rods is rhodopsin. A single photon can be absorbed by a single molecule that changes shape and chemically triggers a signal that is transmitted to the optic nerve. Vitamin A aldehyde also plays an essential role as a light-absorbing pigment. A symptom of vitamin A deficiency is night blindness because of the failure of scotopic vision.
It is possible to test our visual sensitivity by using a very low level light source in a dark room. The experiment was first done successfully by Hecht, Schlaer and Pirenne in 1942. They concluded that the rods can respond to a single photon during scotopic vision.
In their experiment they allowed human subjects to have 30 minutes to get used to the dark. They positioned a controlled light source 20 degrees to the left of the point on which the subject's eyes were fixed, so that the light would fall on the region of the retina with the highest concentration of rods. The light source was a disk that subtended an angle of 10 minutes of arc and emitted a faint flash of 1 millisecond to avoid too much spatial or temporal spreading of the light. The wavelength used was about 510 nm (green light). The subjects were asked to respond "yes" or "no" to say whether or not they thought they had seen a flash. The light was gradually reduced in intensity until the subjects could only guess the answer.
They found that about 90 photons had to enter the eye for a 60% success rate in responding. Since only about 10% of photons arriving at the eye actually reach the retina, this means that about 9 photons were actually required at the receptors. Since the photons would have been spread over about 350 rods, the experimenters were able to conclude statistically that the rods must be responding to single photons, even if the subjects were not able to see such photons when they arrived too infrequently.
In 1979 Baylor, Lamb and Yau were able to use toads' rods placed into electrodes to show directly that they respond to single photons.
micro saccade频率会高点。我印象中,黑屋子里眼睛是会漂移的。这个时候的眼动是有些特殊。
我看了你下面的回复,如果目的本来是眼动补偿,实时性怎样?如果实时性足够好,那就太好了。
另外,用来检测眼睛位置的眼底成像,是靠什么来定位的,盲点么?
另外,我很好奇你们怎么作眼动补偿?我的理解你们是要把图像固定在网膜某个位置上,眼睛怎么动都没关系。通过光学补偿应该比较靠谱一些,但是涉及到机械的响应的时间灵敏度。如果是通过显示屏,可能意义有限,时间分辨率可能不够,200Hz的显示器可能都不多。
我是很想知道多久后人盯多久后会“看不到”。平常就算我们盯的再集中,眼睛还是不断的微小抖动,相当于不断的刷新。