淘客熙熙

主题:【原创】围绕脑科学而发生的若干玄想 -- 鸿乾

共:💬461 🌺824 🌵2
全看树展主题 · 分页首页 上页
/ 31
下页 末页
家园 熵=phantom, insider your mind

first of all, thx for the forbes piece, a worth reading, and that motivated me to do a follow up;

1.

"熵不是亂度或無序",

http://proj3.sinica.edu.tw/~chem/servxx6/files/paper_2862_1231474464.pdf

丁尚武

國立中山大學 化學系

2.

the above is a great piece, but far from the core of the white logic, which I have commented many times already,

90岁彭桓武:对爱因斯坦两段话,至今未能真正理解 [ 晓兵 ]

"concepts such as 系综, 么正性, gauge, 測度, 度規, etc, the key physics/math aspects of the core of the white logic,"

3."熵不是亂度或無序", then what it is?

3.1

熵=phantom, insider your mind, inside my mind

if I can borrow "phantom of the opera"

么正性, gauge, 測度, 度規=路徑積分 of phantom, insider your mind, inside my mind, inside of every "free soul"

in a 洛伦兹流形

after all that kind of "phantom shaking out", and sometimes in a possibly very bloody way, we may be able to have a clue/路徑 about the real phantom, or 伟光正, kind of the white's version

http://www.youtube.com/watch?v=VlRnzANjVZs

3.2 phantom= an open-ended journey

short term: until we humanity as a whole figure out how to exit from earth in the next 1k to 5 billion years

3.3 廣義相對論's phantom

"由於等效原理(Equivalence

Principle) 所要求的廣義座標協變性(General

Covariance),廣義相對論基本上有一個無窮大的規範對

稱(gauge symmetry),大到使得這個理論中不存在任何

規範不變的局域物理觀測量"

4. there is this the greatest ocean between the white culture/science and those of asia, and us china in particular, and one of the reasons for us Chinese's very narrowed culture/mindset's 光譜 is that we don't really have religion, science in our 6k years old Chinese culture, and I don't want to talk about that too much

anyway, the forbes piece is a good one, and I will read it and will have a better idea about the authors of that paper

5. a great piece, thx, Alexander Wissner-Gross, is going to make a lot of money with his models, good for him

6.

"From Atoms To Bits, Physics Shows Entropy As The Root Of Intelligence", overall a good piece

Anthony Wing Kosner does not know that "熵不是亂度或無序", understandably since 熵 is such an over abused term, still, he some how managed to get some of the major points of dr. Alexander Wissner-Gross's paper;

Anthony Wing's writing is still a great piece, but Anthony Wing Kosner of the forbes writer, a possibly yale art major, does not really understand "熵不是亂度或無序", 熵 as a critical concept

http://www.forbes.com/sites/anthonykosner/2013/04/21/from-atoms-to-bits-physics-shows-entropy-as-the-root-of-intelligence/

7.

now, let us "read" through Alexander Wissner-Gross's paper, with Anthony Wing Kosner's 科普, and my comments (many from my previous posts)

---------quoted from Anthony Wing Kosner's piece about Alexander Wissner-Gross's paper-------

“Casual Entropic Forces,” that seeks to formalize the “deep connection between intelligence and entropy maximization.”

In short, everything in nature (our minds included) seeks to keep its options open. Instead of seeing entropy as a form of destruction (things falling apart) Wissner-Gross shows it to be a state of active play.

They see “intelligence as a fundamentally thermodynamic process,” where any given system engages in a “physical process of trying to capture as many future histories as possible.”

"Future histories? They mean possible outcomes. "

--my comment-------

my comment: I have commented so much about "canonical (平衡正則) system", and such a system is time invariant=future outcomes are already "included" in the system, 决战千里之外=千里之外 is already "priced in" in the model, with our ass fully covered, so we don't go out there naked and get f---ed from behind.

my previous post: if we can manage "1" part, we basically have system's 么正性,因果关系, 逻辑链条 established, in terms of defining 測度 with 機率 distribution in a well defined (L2 可积 mathmatically,or 位能場平方力 physics model wise) hilbert space, 冯-诺伊曼's 泛函, etc;

and such a system is normally called a "canonical (平衡正則) system", and within the system, we can calculate from 因 to 果, or from 果 to 因, classical 哈密顿系统辛流形, and going further into QFT under 相对论框架 , we could have 虚時間,实時間, 虚粒子,实粒子, off the shell, on the shell, and their 么正性,因果关系, 逻辑链条, etc;

---quoted---------

Wissner-Gross explains that some important landmarks in human evolution, like the use of tools, upright walking and social organization, are dening behaviors of the human ‘‘cognitive niche’’ that spontaneously emerge through the entropic forces that his theory describes.

---my comment--

Verlinde: gr's 引力場 emerges just as an entropic force, a thermodynamic model of 引力場

---quoted---

Because these are principles of physics, though, humans are not particularly privileged. Any system that can be acted upon by entropic forces can become intelligent. A recent theory by Eric Verlinde, a professor of physics at the Institute of Theoretical Physics at the University of Amsterdam, suggests that gravity itself is not an elemental force, but “simply a by-product of nature’s propensity to maximize disorder.” In other words, a special case of entropy.

---my comment: the above about prof Eric Verlinde is a good summary-------

---quoted----

A second example (see bottom sequence above) Shows how a “hand” can use a “tool” to extract “food” from a confined space (too small for the hand to reach in.) Again, it is only through programatic movement “governed by simple principles of thermodynamics,” that maximize access to “future histories” (in other words, entropy.) “It actually self-determines what its own objective is,” says Wissner-Gross. “This [artificial intelligence] does not require the explicit specification of a goal.” In this, Entropica is different from most AI systems. Similar, perhaps, is the way that Expertmaker encourages users to play with example sets of their data using “small AI” components instead of the more conventional “big data” expert systems.

--my comment---

“It actually self-determines what its own objective is,” says Wissner-Gross===marketing to the non-theoretical physics phd market, understandably

I have wrote before, once a

a "canonical (平衡正則) system" is assumed and modeled, we can we can calculate from 因 to 果, or from 果 to 因,etc, the system's own objective=given already by 么正性, or 因果关系 as defined in a Hilbert space which it self is well defined by 冯-诺伊曼's 泛函.

for a system to survive: it has to use 最小作用量, with 最大范围( to get information, often "最大體積" in 洛伦兹流形) 积分, kind of like the plant's animal behavior you guys discussed, and we could call that as plant's 最小作用量原理 or plant's AI, and from plant's AI to 費曼路徑積分, etc

2.

if we can manage "1" part, we basically have system's 么正性,因果关系, 逻辑链条 established, in terms of defining 測度 with 機率 distribution in a well defined (L2 可积 mathmatically,or 位能場平方力 physics model wise) hilbert space, 冯-诺伊曼's 泛函, etc;

and such a system is normally called a "canonical (平衡正則) system", and within the system, we can calculate from 因 to 果, or from 果 to 因, classical 哈密顿系统辛流形, and going further into QFT under 相对论框架 , we could have 虚時間,实時間, 虚粒子,实粒子, off the shell, on the shell, and their 么正性,因果关系, 逻辑链条, etc;

----------quoted--

And physics equations themselves are incredibly efficient descriptions of movement. Unlike traditional animation in which everything must be specified, a physics movement has a starting point and some initial attributes and the rest, including the end point, just happens. And not only does this take less code and less processing time, it also feels more natural because we recognize physics intuitively as the way that things in the world “just work.”

What we see here is a mathematical description of spontaneity, of freedom—of play. Wissner-Gross writes that these “maximum entropy methods have been used for… strategy algorithms [that] have even started to beat human opponents for the rst time at historically challenging high look-ahead depth and branching factor games like Go by maximizing accessible future game states.”

---my comment: a good "marketing" summary about the white's "canonical (平衡正則) system" and the logic behind it--------

----quoted----

It may be that it has taken us more than century to acclimate to the intellectual disruptions set in motion by Einstein. In classical physics, entropy is the enemy, something that tears down what we build up. But in the quantum world, the chaos of entropy is the vitality of life. And it reveals itself not in grand historical revolutions or world wars, but in our casual, everyday activities. We cultivate open minds not because we are liberal or conservative, young or old, but because we understand intuitively that it is a matter of survival—physically, emotionally and intellectually—to maximize access to future possibilities.

---my comment---

I don't think "a quantum world" is in Alexander Wissner-Gross's that paper

overall, a yale-humanity/art major (my guess) can write such a on the money summary on Alexander Wissner-Gross's paper, is pretty amazing;

I remember I wrote here may be a couple of years ago, that 老美 is a 疯子 society, financed by a 疯子 economy, with a 疯子 culture/ mindset;

疯子=phantom of opera;

8. 老美=爱因斯坦场, full of 疯子 with many of 疯子=引力奇点

8.1

引力奇点- 维基百科,自由的百科全书 - 维基百科- Wikipedia

https://zh.wikipedia.org/zh-hant/引力奇点

引力奇異点,也称时空奇異点或奇點,是一个體積无限小、密度无限大、時空曲率無限大的點。 两种最 ... 線性化重力、後牛頓形式論、爱因斯坦场方程、弗里德曼方程 ...

8.2

(as I wrote before) 引力, everywhere, as we interact with each other, and the more we move, the more we contribute to 引力場 from our 自能場 we create as we move, and the stronger 引力場 make us move even more, a full interaction type of evil, non-linear, 无穷大 stuff, kind of challenging issues for GR's gravity quantization, how can you quantize something non-linear?

if someday we have a breakthrough in gravity quantization, everybody will double their life spans from 30k day to 60k day, so far, I think we die, because our brain can't handle gravity in today's social 引力場;

9.

老美=火車頭 of human civilization as we know, for the foreseeable future

and if EU can put its ass together and do some real work,老美 will 如虎添翼 to move world economy forward out of the current sluggish qeed growth;

and for tg: all tg needs to do is to 搭顺风车, what a lucky tg, and tg's n-代, 再活500年?!

家园 新闻:日科学家使用核磁共振读取梦境:准确率约60%

日科学家使用核磁共振读取梦境:

外链出处

美国加州大学伯克利分校科学家杰克·格朗特(Jack Gallant)表示:“这是一项有趣的工作,令人兴奋。相比低级区域,从更高级别的大脑区域进行解译可以更加精确地重构梦境,这一事实说明引发梦境的大脑活动中牵涉到一些与视觉想象有关的脑部区域。”

这样讲来,梦其实就是以视觉区(高级和低级的视觉区)为主的处理信息的活动。好像我们做梦的确没有什么声音。大家都如此吗?

这也再次说明了,视觉区和思维的重要关系。

家园 这个高级

技术本身并不算难,不过对于当今科研来说,受试是人,这样成本就会比较高一些,同时还要有fMRI,这对于门槛要求也不算低。设计挺巧妙的,不过受试数量太少了,只有3个人。如果能把数据库建立起来,还是挺有意思的一件事情。

北医老万他们其实在做类似的事情,不过他们记录的是脑电。三院有MRI的设备条件,但不知道有没有类似的项目。

家园 无意中,看到一些河里面的老帖,放到这里

基底核 :URL=]/article/2169086[/URL]

这个部位不在新皮层中,但是,恐怕作用非常大,要多学习一下。

下行传导束:链接出处

说一点狂犬病病毒对人类的贡献:

链接出处

说清楚了如何做神经通路观察。

家园 人是基于一个物种存在的

即使个体因为生理极限而无法进一步提高思考能力,但是因为有语言和文字,所以人类作为一个整体是可以不断提高思维能力的。

1.人类可以通过分工协作获得并联思考的能力。通过文字交流,这种能力甚至是跨越时空的。

2.人类可以拓展外设,比如纸张,比如计算机,比如各种超越人类感官的sensor。新的输入会刺激新的思考。

3.人类可以提升与外设的交互能力,比如编写目录,比如google。

4.人类可以提高算法,比如运用现成的科学定律。

5.人类甚至可以通过增加人口,从而获得某种概率上的优势。

家园 也许这个随机因素是这样生成的

乱想啊。

我觉得人脑里大概train了很多算法和模型。人脑在获得输入以后会通过常用的算法得到很多输出,但是每个人掌握的算法不同,优先级不同,weight也不同。即使同一个人,在不同条件下对算法的优先级和weight也可能不同。最后的结果会体现有随机性。但是对某些问题又会体现一致性。

家园 喜欢pattern recognizer,但不喜欢

hierarchical。

我就瞎猜啊。

人脑里的确有无数的pattern recognizer,或者说function。这些function可以相互调用。

他们没有hierarchical的结构,但是存在不同的weight,常用的weight就高,好用的weight也高。

解决问题的时候先捡weight高的几个用,建立temporary的调用结构,处理问题。如果这个temporary的结构经常被用到,weight就高,这个temporary的结构逐步成为一种新的pattern recognizer。

家园 谢谢回复这个老帖子。不过,层级是不可避免的

我们来设想一下你说的调用。那么调用的和被调用的,就成了层级结构。当然,理论上讲,完全可能在某些时候,被调用的反过来成立调用的,而调用的,成了被调用的。不过,这个可能性非常小吧。因此在这个意义上,层级不可避免。

我理解你的意思,那就是,最初恐怕也没有层级,不过是在逐渐的发展过程中出现的。这也对。但是,脑中,应该还有天生的遗传的。天生的,遗传的,事实上还处于某种核心位置。这些遗传天生的层级结构,就是脑与生俱来的了。

家园 早知道您这个系列一定好看

所以一直攒着,今天才开始爬楼。

我觉得由相对单一的层次机构会不会有很强的创造力。

首先人类大脑能够同时调用的基本思维模块不可能太多。内存里会先以某个思考模式为基点,调用一系列的思考模式,最终形成一个层次结构。如果这个层次结构不管用,人会选择暂时放弃,玩一会或者搞搞别的。玩着玩着,一个苹果掉下来了,于是可能就以这个苹果下落相关的思考模式为基点,启动完全不同的另一临时层次机构。这种树种的多了,说不定有一天问题就解决了。而解决这个问题的基点就是灵感。

我这样认为,是因为人脑的瞬时调用能力有限,而存储的思维模式可能数量非常庞大。

至于遗传带来思维模式可能一部分是无意识的后台进程,一部分是一些非常必要的基础思维模式(这些模式可能带给我们一些固有的偏见)。

家园 最后一项存疑

人多就会把消灭对方或者exploit对方做为优先,即情商制胜论,劳心者治人等。实际上人的大脑有很大一部分做工是消耗在与其他个体以及群体中如何竞争协作上的,只有极少部分呆头呆脑的生活在自己的抽象世界中的人在充分开发自己大脑的潜力而把人类文明向前推进,绝大部分人类从出生到死亡不过是生活在五百年出一个的红太阳白太阳设计好的框框中,为生物学意义上的物种进化做着缓慢的努力。这种努力在千万年的视角下才有意义,而在现在这个时间段内,等于是在做着与自然界光合作用同样的事。

昨天读到一篇文章,读读解闷吧 Capitalism is Dead. Long Live Transhumanism.

家园 玄想6:脑科学的发展的必然归途就是社会结构的发展

Fuhrer下面的话很有意思,不应该很深地埋在下面,因此提起来:

链接出处

他说:

人多就会把消灭对方或者exploit对方做为优先,即情商制胜论,劳心者治人等。实际上人的大脑有很大一部分做工是消耗在与其他个体以及群体中如何竞争协作上的,只有极少部分呆头呆脑的生活在自己的抽象世界中的人在充分开发自己大脑的潜力而把人类文明向前推进

不能不说,这就是几千年的人类文明史的现实。赞赏也好,痛心也好,这的确是现实。

其实我是知道的,脑科学的这些话题讨论下去,终归会谈到这上面来。但是,我不是社会问题方面的人,对这方面的事情,有所了解,但是没有深厚兴趣。因此我就特别不讲这方面的事情,虽然也提到过一些。如果有朋友有兴趣,当然欢迎。不过呢,社会方面的话题一开,恐怕就难以收住,打架就不可避免。恐怕还是少说为好。

但是,我愿意提出这个想法,既然现在的的知识积累,思维的范围,等等,已经远超出了个人的脑能够掌握的程度,脑的发展的下一步,很自然的就是和社会有关的了。一个社会的结构能够更有效地发挥和发展个人的脑力的,才是最终胜出的社会。

那么究竟什么样的社会结构是这样的呢?这就是很多冲突,很多争论,很多博力的了。这些事情,我不参与。但是,我想,总是有些技术上的指标是我们可以谈的。

第一个指标,那就是人机交互的发展和发达。我们这个话题讲了很久了,我们都相信,人脑做很多信息处理非常有效,但是做另外一些信息处理并不是很有效,相反机器则更有效。因此人机交互的发展,使得人脑能够和机器互为补充,就是非常必要,而且也迫在眉睫的。

第二个指标,那就是人与人的交互的发展和发达。我们这个话题就可以作为一个例子。倒退30年,我们这样的活动还是不可想象的。那时,如果不是大家一起在一个研究院里面,是不可能做这样的讨论的。但是现在我们可以了。而且很轻松,成本非常低。我相信,我们现在的这些讨论,事实上质量远超过当时的研究院里面的类似的讨论(如果那时有的话)。这样的通过适当技术手段来达到人与人的交互的发展和发达,就将很快普及。FB等不过是开了一个头。西西河也是先锋。但是,以后的发展会更多更大。这方面的想象力大一点不会有错。

第三个指标,搞情商的人和搞智商的人的比例。如果这个比例过高,就有碍于发展了。但是,究竟谁搞情商?谁搞智商?这个问题才是问题。苹果公司里面,是乔搞情商呢?还是乔搞智商?

另外,墨虎也说得很好。他说:

即使个体因为生理极限而无法进一步提高思考能力,但是因为有语言和文字,所以人类作为一个整体是可以不断提高思维能力的。

1.人类可以通过分工协作获得并联思考的能力。通过文字交流,这种能力甚至是跨越时空的。

2.人类可以拓展外设,比如纸张,比如计算机,比如各种超越人类感官的sensor。新的输入会刺激新的思考。

3.人类可以提升与外设的交互能力,比如编写目录,比如google。

4.人类可以提高算法,比如运用现成的科学定律。

5.人类甚至可以通过增加人口,从而获得某种概率上的优势。

简评一下他说的4。他说的提高算法其实就是说,用已知的科学规律,来取代人脑中现有的一些模式识别器,或者说,用公式来取代拍脑袋。可以说,这样是利弊兼有的。如果真是科学规律,例如用规尺代替眼睛看,用牛顿力学公式代替口口相传,那当然是无往不利的。但是,这样的科学规律并不多。事实上现在流行的很多所谓科学规律,事实上并不怎么科学。举例来说,国内流行的打分制度,就是很不科学的一种制度。人脑的若干模式识别器,经过很多实践的培养,还是比很多所谓的规律更有效。打分制度恐怕比不上有经验的无偏心的脑袋。

不过,对已知的科学规律,应该有更好的方法和人脑结合起来。如果这样做到了,人脑就极大前进了一步。

家园 发现你以前的一个帖子早就对这个话题有过评论

与这两个人的交锋涉及到的问题基本上是一样的

http://www.ccthere.com/article/3864887

放在一起读比较好。

家园 晓兵有个帖子对这个问题说的更详细

http://www.ccthere.com/article/3864887

家园 也有个玄想

人类永生现在还做不到,当然Kurzweil认为还有15年就可以做到,这个不论。

但是有关墨虎提到的第一点,人类的并联思考能力,以及我们前面讨论过的大脑极限问题,如果死去的人的大脑可以保持活性,比如通过机器维持生物体循环血液供应等,也就是说大脑仍然可以清醒,这个在不少科幻中出现过,也许以目前的科技水平做到有可能,那么历史上的科学家们与一代又一代的人共同“并联思考”就成为可能,如此人类的智慧总量不单通过文字语言来继承,而且可以通过活体大脑来达到总量的持续提高,这样不是更好么。

家园 墨虎的第四点

还可以说几句,现在已经有大学开始使用机器算法给学生打分了。另一个现象是许多人熟悉的华尔街操盘的HFT,现在市场上80%的买卖是机器做决定的,这个机器取代人脑在某些领域中已经开始加大了扩张的趋势。

选两篇最近的文章看:

Capitalism is Dead. Long Live Transhumanism.

点看全图

外链图片需谨慎,可能会被源头改

这个对后工业化时代有着比较直观的描述,因为这是美国现实中正在进行时,但是许多人忽视或不解的。其中比较唬人的观点,比如上学越多收入越低,中美之间的生产力转移以及对未来的影响。

另一篇文章是MIT Tech Review的2013年十大科技突破(2013年似乎刚刚过去不到一半啊):

包括深度机器学习与记忆植入等:

http://www.technologyreview.com/lists/breakthrough-technologies/2013/

点看全图

外链图片需谨慎,可能会被源头改

全看树展主题 · 分页首页 上页
/ 31
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河